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ABSTRACT		
	

Enterprise	 risk	management	 has	moved	 from	 an	 event	 based	 view	 of	 risk	 to	 a	 holistic,	
systems	based	approach.	Risk	 systems	 that	 involve	human	 interaction	are	 classified	and	
behave	 as	 complex	 adaptive	 systems	 and	 evolve	 over	 time.	 	 An	 understanding	 of	 the	
evolution	of	an	enterprise’s	risk	system	should	reveal	the	nature	of	risk	relatedness,	future	
likely	emergence	of	risks	and	be	able	 to	 identify	risk	characteristics	 that	are	 systemic	 to	
that	specific	enterprise.	 In	order	 to	operationalise	such	an	approach,	a	methodology	has	
been	 developed	 that	 draws	 on	 phylogenetic	 approaches	 that	 have	 been	 successfully	
developed	 for	 biological	 and	 language	 evolution	 studies.	 	 The	 technique	 and	 process	
provides	 an	 insight	 into	 the	 lineage,	 pace	 and	 impact	 of	 external	 conditions	 on	 the	
evolution	 of	 risks.	 It	 also	 provides	 a	 unique	 and	 rational	 classification	 of	 risk	 in	 an	
enterprise	which	 can	 be	 used	 to	 optimize	 risk	management	 resources.	An	 example	 of	 a	
fictitious	insurance	company	is	used	to	illustrate	the	approach.			
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1.	INTRODUCTION	
	

The	 authors	 introduce	 a	 novel	 approach	 to	 risk	 analysis	 and	 management	 that	 is	

grounded	on	three	interconnected	principles:	

1. Risks	behave	as	complex	adaptive	systems,	not	as	an	aggregation	of	events,	(Allan	

and	Davis,	2006).	This	concept	extends	beyond	the	principle	‘the	whole	is	greater	

than	the	sum	of	the	parts’	to	include	Angyal’s	modification	that,	‘aggregation	and	

whole	formation	are	processes	of	an	entirely	different	order’	(Angyal,	1941).			

2. Evolution	is	a	signature	of	complex	adaptive	systems	(Mitleton‐Kelly,	2003)	and	

(Morel	and	Ramanujam,	1999);	and	hence	risks,	should	by	definition,	evolve	and	

follow	 evolutionary	 principles.	 This	 also	 applies	 to	 companies	 and	 economies	

(Arthur,	1997).	

3. Connectivity	is	a	fundamental	property	of	any	system	(Newman,	2010),	(Mason,	

2005),	Barabasi	and	Albert,	(2002)		and	(Checkland	and	Scholes,	1990).	

	

There	is	a	trend,		that	in	modern	society	and	its	organisations,	risks		have	become	more	

complex	 and	 interdependent	 (Beck,	 1992,	 and	2004).	 This	 has	 been	 borne	 out	 by	 the	

recent	systemic	crisis	in	the	financial	sector,	where	banks	were	lending	and	trading	with	

each	other	and	the	impacts	of	their	losses	relating	to	their	mis‐priced	mortgage	books,	

are	felt	throughout	the	broader	economy	and	society	as	a	whole.	Indeed,	it	is	suggested	

that	connectivity	is	the	third	dimension	of	risk	(Allan,	Yun	and	Cantle,	2008)	to	be	added	

to	 the	 two‐factor	 risk	 paradigm	 of	 probability	 and	 impact.	 Moreover,	 Mitleton‐Kelly	

(2003)	argued	that	the	interconnected	nature	of	the	elements	in	a	system	enables	both	

the	system	and	its	parts	to	evolve.		

	

Using	evolutionary	theory,	and	specifically	phylogenetic	techniques	developed	to	study	

the	evolution	of	biological	systems,	it	will	be	demonstrated,	using	a	case	study,	that:		

1. Risks	 can	 be	 understood	 to	 have	 a	 unique	 characteristic	 sequence,	 very	much	

like	a	DNA	to	a	biological	entity.	
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2. The	history	of	 the	evolutionary	path	(path‐dependency)	 is	an	 important	aspect	

of	 a	 risk;	 this	 is	 of	 course	 already	 well	 known	 to	 financial	 and	 insurance	

professionals.	The	point	here	is	to	understand	what	the	parent	risk	is	and	when	

a	risk	characteristic	combines	or	separates	to	form	a	new	lineage.	It	is	possible	

to	 identify	 systemic	 characteristics	 that	are	highly	 influential	 in	 the	 forming	of	

risks	in	a	system.	

3. Taking	 into	 account	 the	 unique	 evolutionary	 history	 of	 an	 organisation’s	 risk	

system	it	is	possible	to	determine	the	likely	future	trajectories	or	emergence	of	

new	or	evolving	risks.		

4. Lastly	the	paper	demonstrates	that	the	evolutionary	analysis	provides	a	unique	

and	 powerful	 way	 of	 classifying	 risks	 that	 is	 independent	 of	 traditional	

organisational	 boundaries	 and	 risk	 taxonomy	 structures	 such	 as	 are	 imposed	

through	 capital	 standards.	 The	 technique	 can	 show	 the	 most	 interdependent	

risks	 –	 that	 is	 the	 risks	 that	 could	 have	 a	 significant	 influence	 on	 a	 cascading	

failure	of	the	enterprise.	This	can	aid	effectiveness	and	efficiencies	in	managing	

risks	and	allocating	risk	related	resources	or	capital.		

	

Before	 embarking	 on	 the	 case	 study	 it	 is	 necessary	 to	 first	 explain	 the	 background	 to	

phylogenetics	and	its	principles	so	as	to	appreciate	how	the	approach	has	been	adapted	

to	analysing	risks.		
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2.	HISTORY	AND	DESCRIPTION	OF	PHYLOGENETIC	ANALYSIS	
	

In	 the	 eighteenth	 century,	 Linnaeus	 pioneered	 the	 classification	 practice	 by	 grouping	

organisms	in	accordance	to	their	similarities	and	differences	(Wheeler,	2005).	Linnaeus’	

work,	much	like	traditional	risk	management,	can	be	described	as	systematic,	instead	of	

evolutionary,	 as	 the	 objective	 was	 to	 place	 all	 known	 organisms	 into	 a	 hierarchical	

structure.	 Phylogeny	 on	 the	 other	 hand,	 being	 inspired	 by	 Darwin’s	 evolutionary	

approach,	 (Brown,	 2007)	 not	 only	 indicates	 the	 similarities	 and	 differences	 between	

species,	but	also	illustrates	their	evolutionary	relationships	(Pagel,	1999).		

	

With	the	advances	in	computational	capabilities	and	molecular	knowledge,	the	study	of	

classification	 and	 evolution	 has	 entered	 a	 new	 era.	 Phylogenetic	 analysis1	 	 	 utilises	

molecular	 information,	 i.e.	 DNA,	 	 to	 meet	 the	 data	 requirements,	 and	 assigns	 equal	

weights	 to	 characters	 (Mishler,	 2005).	 By	 doing	 so,	 the	 approach	 is	 less	 subjective	 –	

‘rather	 than	making	 assumptions	 about	which	 characters	 are	 important,	 phylogenetic	

analysis	 demands	 that	 the	 evolutionary	 relevance	 of	 individual	 characters	 be	 defined’	

(Brown,	2007).		

	

The	 outputs	 from	 phylogenetic	 analysis	 are	 tree‐like	 shapes,	 often	 called	 ‘evolution	

trees’,	 ‘phylogenetic	 trees’	 or	 ‘cladograms’	 –	 see	 figure	1	 for	 a	high‐level	 cladogram	of	

the	tree	of	life.		A	phylogenetic	tree	is	essentially	a	connected	graph	that	is	composed	of	

nodes	and	branches	and	does	not	 contain	any	closed	structures.	The	nodes	 symbolise	

the	 organisms	 under	 investigation,	 whereas	 the	 branches	 that	 connect	 all	 the	 nodes	

represent	 the	 relationships	 among	different	 organisms,	 in	 terms	of	 their	 ancestry	 and	

descent	 relationships.	 Epistemologically,	 a	 node	 is	 an	 entity	 that	 is	 homogenous	 and	

comparable	 to	 other	 entities	 being	 studied	 and	 its	 informative	 character	 states	 are	

always	 subject	 to	 change	 as	 knowledge	 of	 characters	 progresses	 (Albert,	 2005).	

Therefore,	 the	 application	 of	 the	 phylogenetic	 trees,	which	 is	 composed	 of	 nodes	 and	

branches	 that	 link	 nodes,	 is	 not	 restricted	 to	 organisms.	 Indeed	 all	 individual	 entities	

																																																													

1	The	terminology	‘phylogenetic	analysis’	and	‘cladistic	analysis’	are	often	interchangeable	in	
contemporary	usages	and	this	paper	does	not	discriminate	between	the	two.	
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with	 taxonomic	 characters,	 such	 as	 species,	 populations,	 individuals,	 genes,	 or	 even	

organisations	(McCarthy	et	al.,	2000),	can	be	analysed	with	this	method.		

	

Figure	1	–	Cladogram	example	of	the	tree	of	life.		We	can	apply	this	to	the	example	of	risk	by	
substituting	risk	events	or	losses	for	the	“species”.		We	can	then	explore	the	relationships	in	
order	to	understand	how	certain	characteristics	are	evolving	over	time	to	generate	new	
emergent	risks.	

	

All	 phylogenetic	 trees	 	 can	 provide	 the	 same	 basic	 information,	 including	 a	 historical	

pattern	of	ancestry,	divergence,	and	descent,	all	of	which	can	be	interpreted	from	their	

structure	 (Lecointre	 and	 Le	 Guyader,	 2007).	 Basically,	 the	 nodes	 of	 a	 tree	 can	 be	

categorised	as	external	or	internal,	according	to	their	relevant	positions.	That	is,	nodes	

at	the	terminal	tips	of	a	tree	are	called	the	external	nodes	(Mishler,	2005),	whilst	the	rest	

are	termed	the	internal	nodes	and	these	are	the	ancestors	of	the	former.	In	other	words,	

external	 nodes	 are	 descendants	 of	 connected	 internal	 nodes.	 The	 links	 between	 the	

nodes	 are	 called	 the	 branches	 and	 the	 lengths	 of	 these	 are	 proportional	 either	 to	 the	

evolutionary	 time	 or	 the	 number	 of	 mutations	 occurring	 along	 that	 branch	 (Li	 et	 al.,	

2000).	Evolution	occurs	independently	along	the	branches	emanating	from	each	internal	

node	 and	 the	 overall	 structure	 of	 nodes	 and	 branches	 represents	 a	 given	 entity	 set’s	

degree	of	diversity.		
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2.2	DIFFERENT	PHYLOGENETIC	ALGORITHMS	
Li	et	al.	conducted	a	survey	of	how	scientists	construct	phylogenetic	trees	and	concluded	

that	there	are	three	major	methods	and	algorithms	employed	(Li,	2000):	

 distance	matrix;	

 maximum	likelihood;		

 parsimony.	

In	 practice,	 these	 different	 tree	 constructing	 algorithms	 need	 to	 be	 applied	with	 care,	

particularly	in	the	context	of	risk	analysis.		For	example,	the	distance	matrix	algorithm,	

though	 computationally	 efficient,	 can	 produce	 inaccurate	 inferences	 under	 certain	

conditions	(Pagel,	1999).	The	maximum	likelihood	method	and	other	Bayesian	methods	

rely	more	 on	 statistical	models	 to	 describe	 the	mutation	 process	 at	 a	molecular	 level	

(Kishino	et	al.,	1990).	This	sort	of	model	is	not	easy	to	obtain	for	risk	analysis,	and	the	

results	can	be	difficult	to	interpret.		

Methods	 based	 on	 the	 principle	 of	 maximum	 parsimony	 have	 been	 by	 far	 the	 most	

widely	 used,	 because	 they	 are	 probably	 the	 most	 logical	 and	 intuitive	 to	 apply.	 The	

principle	behind	the	parsimony	approach	 is	 that	 ‘a	tree	 is	more	preferable	 if	 it	 involves	

fewer	evolutionary	changes’	 (Lin	et	 al.,	 2007).	 In	other	words,	 the	one	with	 the	 fewest	

evolution	changes	is	termed	a	parsimonious	tree,	as	the	term	‘parsimony’	implies	as	few	

changes	as	possible	(Sneath	and	Sokal,	1973).		However,	Sober	notes	that	the	parsimony	

algorithm	 does	 make	 assumptions	 about	 evolution	 but	 that	 those	 assumptions	 are	

modest	 and	 unproblematic	 and	 that	 the	 most‐parsimonious	 tree	 is	 better	 supported	

than	the	others,		(Sober,	2005).	After	considering	the	advantages	and	drawbacks	of	each	

algorithm	and	their	experience	of	applying	and	interpreting	the	resulting	trees	in	a	risk	

context,	 the	authors	 conclude	 that	 the	parsimony	method	 is	 the	most	 suitable	 for	 risk	

analysis.		

	

	
	
	



7	|	P a g e 	

	

3.0	TECHNIQUES	FOR	VIEWING	AND	INTERPRETING	THE	TREES	AND	DATA		
	

A	risk	 tree	 is	studied	 from	left	 to	right.	 	As	we	move	to	 the	right,	 the	 tree	branches	 to	

indicate	points	where	the	risk	characteristics	are	separating	in	evolutionary	terms.		The	

evolution	risk	trees	show	the	origin	on	the	left	hand	side	with	the	branches	separating	at	

bifurcation	points	caused	by	a	change	of	common	risk	characteristics.					

Figure	2	below	shows	a	section	of	a	tree	with	two	legs	representing	risks	A	&	B			‘lost	

intellectual	property	rights’	and	‘claims	infringement	of	intellectual	property	rights’,	

respectively.	The	risk	characteristics	are	indicated	by	the	numbers	on	the	branches:	22	–	

‘inadequate	legal	framework;	7	–	‘crime’	and	25	–	‘human	error	or	incompetence’.		This	

tree	shows	there	was	an	earlier	risk	with	hazard	22	from	which	emerged	the	two	new	

risks,	A	&	B,	with	additional	characteristics,	7	and	25	respectively.	

	

	

	

	

	

	

	

	

	

	

	

Figure	2	above	shows	a	section	of	a	tree	with	two	risks.	The	characteristics	are	
indicated	by	the	numbers	on	the	branches:	22	–	‘inadequate	legal	framework;	7	–	
‘crime’	and	25	–	‘human	error/	incompetence’.			

	

There	 are	 many	 patterns	 formed	 within	 the	 trees	 which	 indicate	 where	 evolution	 is	

most	 likely,	 thus	 helping	 with	 the	 monitoring	 and	 prioritisation	 of	 risk	 mitigations.		

These	common	patterns	are	captured	in	the	Table	1Table	1	below:	

Time

Characteristics	

Risk	A	‐ Lost	intellectual	property	rights

Risk	B	‐ Claims	infringement	of	IP	rights

7

22	

25
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Characteristic	 Example	evolution	tree	

Low	Bifurcation:	
Low	numbers	of	bifurcations,	
shown	by	long	straight	
branches,	indicate	areas	of	
limited	emergence.		These	
areas	are	stable	and	
independent	from	other	risks.		
They	possess	few	
characteristics	and	can	be	
more	easily	tracked.	

	
	

High	Bifurcation:
High	numbers	of	bifurcations	
indicate	areas	of	high	
complexity	where	risks	are	
more	likely	to	evolve	from.		
This	is	shown	by	many	
branches	on	the	evolutionary	
tree.		Character	patterns	in	
these	highly	active	regions	can	
often	be	identified,	creating	a	
warning	system.	

Lost	and	Gained	
Characteristics:	
Where	Characteristics	are	lost	
and	later	regained	indicates	
an	interesting	evolutionary	
path.		This	case	may	be	
because	of	a	change	in	the	
environment	and	is	worthy	of	
further	investigation.	
	

16, 17, 18

16, 17, 18

16, 17, 18

Characteristics lost at 
this bifurcation point 
(lose shown by red 

numbers)

Characteristics re-
appear
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Patterns:	
Pattern	spotting	between	sets.		
As	an	example,	pairs	of	
common	characteristics	
appearing	in	multiple	
locations	can	be	used	to	
identify	potential	locations	for	
emerging	risks.		The	emerging	
risks	occur	where	one	of	the	
pair	of	characteristics	exist.		It	
is	possible	that	these	single	
characteristic	locations	may	
evolve	into	the	common	pair.	
Pair	spotting	(and	other	
character	pattern	spotting)	
can	be	used	to	make	
predictions	or	scenarios	about	
future	risks.	

	
Key	character	Change:	
Key	characters	can	indicate	a	
change	to	the	stability	of	the	
system	and	their	presence	can	
warn	of	sudden	changes	and	
further	emerging	risks.		

Sudden	Character	
Emergence:	
The	same	character	in	
multiple	risk	locations	
indicates	something	is	
changing	fast.		If	character	‘14’	
was	‘government’,	for	
example,	why	is	it	suddenly	
affecting	so	many	risks	and	
what	will	the	consequences	of	
this	be?	
	 	

Table	1:	Patterns	in	evolution	trees	

Twice	the	character	9	has	
been	shown	to	result	in	
many	emerging	risks	

The	character	9	has	
evolved	into	these	
risks.		This	should	be	
of	great	concern	and	
requires	particular	
attention	as	new	risks	
are	more	likely	to	
emerge	
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3.	CASE	STUDY	

3.1	APPLYING	PHYLOGENETIC	ANALYSIS	TO	RISKS	
	

A	detailed	methodology	of	the	phylogenetic	analysis	and	techniques	used	in	this	paper	is	

given	in	Allan,	et	al.,	(2013)	so	is	not	repeated	here.		

3.2	BACKGROUND	INFORMATION	FOR	THE	CASE	STUDY		
In	order	to	demonstrate	this	technique,	we	have	applied	it	to	operational	losses	

associated	with	derivatives.		We	have	leveraged	the	work	produced	by	Coleman	(2011)	

who	mapped	a	range	of	relevant	characteristics	to	a	number	of	major	derivative	loss	

events.		The	loss	events	are	shown	in	Figure	3	below.	
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Figure	3	‐	Selection	of	Large	Derivative	Trading	Losses	(2011	USD	equivalent	figures)	

The	characteristics	these	risk	events	have	been	mapped	to	are:	

1. Involves	Fraud	

2. Involving	Fraudulent	trading	

3. To	cover	up	a	problem		

4. Normal	trading	activity	gone	wrong	

5. Trading	in	excess	of	limits	
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6. Primary	activity	financial	or	investing	

7. Failure	to	segregate	functions	

8. Lax	management	/	risk	control	problem	

9. Long‐term	accumulated	losses		>	3	years		

10. Single	Person	

11. Physicals	

12. Futures	

13. Options	

14. Derivatives	

We	have	taken	this	mapping	data	at	face	value	from	Coleman	(2011),	with	the	exception	
of	aggregating	some	of	the	finer	levels	of	granularity	on	the	security	type.		These	
characteristics	are	somewhat	subjective,	and	clearly	it	would	be	possible	to	define	
additional	characteristics,	but	they	are	sufficient	for	our	purposes	to	demonstrate	this	
technique.	

The	following	Figure	4	shows	the	cladogram	of	this	mapping.	

Fraud 

clade

Normal trading activity gone wrong & 

primary activity financial / investing

Derivatives clade

1 Involving Fraud

2 Involving Fraudulent Trading

3 To Cover Up a problem 

4 Normal trading activity gone wrong

5 Trading in Excess of limits

6 Primary Activity Financial or Investing

7 Failure to Segregate Functions

8 Lax Mgmt/control Problem

9 Long-term accumulated losses >3 years 

10 Single Person

11 Physicals

12 Futures

13 Options

14 Derivatives
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Figure	4	‐	Cladogram	of	Large	Derivative	Loss	Events	and	Characteristics2	

Each	branch	in	the	above	Cladogram	ends	in	a	specific	event.		Each	branching	point	is	
defined	by	a	split	in	the	characteristics	as	identified	by	the	numbers	that	are	common	to	
all	members	of	the	sub‐branches.		The	length	of	the	branch	represents	the	number	of	
characteristics	that	“evolved”	to	define	that	branch,	with	more	characteristics	leading	
the	longer	branches.	

These	diagrams	are	very	useful	in	helping	to	visually	identify	patterns	of	interest.		The	
first	thing	that	is	noticeable	in	this	cladogram	is	the	division	into	three	major	clades	or	
groups:	

 normal	activity	gone	wrong	
 fraudulent	activity	
 collection	of	“simple”	events	characterised	by	the	use	of	a	range	of	derivatives	

These	can	be	considered	the	fundamental	risk	elements.		Essentially	the	presence	or	
absence	of	fraud	defines	the	first	major	break	in	lineage.		We	can	then	analyse	which	
event	types	are	more	evolved	than	others	by	analysing	the	branch	length	as	shown	in	
Figure	5	below.	

																																																													

2	Cladograms	produced	using	Evolutionary	Risk	Analysis	software	available	from	
www.systemicconsult.com	
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Fraud 

clade

Normal trading activity gone wrong & 

primary activity financial / investing

Derivatives clade

1 Involving Fraud

2 Involving Fraudulent Trading

3 To Cover Up a problem 

4 Normal trading activity gone wrong

5 Trading in Excess of limits

6 Primary Activity Financial or Investing

7 Failure to Segregate Functions

8 Lax Mgmt/control Problem

9 Long-term accumulated losses >3 years 

10 Single Person

11 Physicals

12 Futures

13 Options

14 Derivatives

	

Figure	5	‐	Cladogram	of	Large	Derivative	Loss	Events	and	Characteristics	–	Evolutionary	
Events	

The	bottom	highlighted	group,	the	derivatives	clade,	shows	very	little	evolutionary	
process.		These	events	can	be	considered	to	be	relatively	stable	and	unchanging	in	
nature.		These	are	the	crocodiles	of	the	risk	world	–	they	have	reached	their	
evolutionary	peak	and	show	little	sign	of	emergent	behaviour.			

In	contrast	to	these	events,	the	two	most	evolved	groups	in	the	fraud	clade	show	
significant	evolution	through	a	large	number	of	bifurcations	in	characteristics.		They	can	
be	considered	to	be	highly	evolved	risk	events,	essentially	derivatives	of	earlier	risk	
events	that	occur	back	up	along	the	branch	path.		These	types	of	events	should	be	
studied	in	detail,	as	they	are	likely	to	give	us	greater	insight	into	the	types	of	events	that	
are	more	likely	to	be	subject	to	evolutionary	forces	in	the	future.		Companies	with	
similar	characteristics	to	these	events	are	more	likely	to	be	subject	to	emerging	risk.	
Furthermore,	we	would	generally	expect	to	see	an	increased	complexity	in	the	new	risks	
that	evolve	in	these	highly	active	areas.	

Figure	6	below	now	looks	at	the	characteristics	that	are	defining	the	evolutionary	
process.	
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Figure	6	‐	Cladogram	of	Large	Derivative	Loss	Events	and	Characteristics	–	Characteristics	

Characters	that	appear	frequently	are	more	likely	to	appear	in	the	future.		The	sequence	
of	characters	can	also	be	important,	as	some	characteristics	tend	to	occur	towards	the	
end	of	branches	rather	than	at	the	beginning.		For	example,	characteristic	9	(Long‐term	
accumulated	losses	in	excess	of	3	years)	always	occurs	at	the	end	of	a	branch	structure,	
indicating	that	it	could	readily	jump	across	to	another	branch	to	define	a	new	emerging	
risk	characteristic.	

We	have	highlighted	bifurcations	involving	characteristic	number	8,	Lax	Management,	
Control	Problem.		This	is	a	very	common	characteristic	as	it	is	evident	in	almost	all	
branches	/	events.		In	many	cases,	it	is	also	evolving	jointly	along	with	a	number	of	other	
characteristics	such	as:	

 10:	Single	person	
 5:	Trading	in	excess	of	limits	
 12:	Physicals	
 7:	Failure	to	segregate	functions	

Characters	8	and	5	(Trading	in	excess	of	limits)	in	particular	seem	to	be	very	closely	
related	in	evolutionary	terms.		Note	that	this	seems	somewhat	logical	in	hindsight,	but	
we	arrived	at	this	conclusion	through	an	objective	analysis	based	purely	upon	a	rich	
classification	dataset.		This	could	be	very	important	information	as	it	provides	clues	as	
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to	what	characteristics	emerging	risk	events	might	have	in	the	future.		From	this	we	can	
then	ask	more	focused	questions	such	as:	

 What	would	the	next	West	LB	(very	top)	or	NatWest	Markets	(near	bottom)	
events	look	like,	if	they	evolved	to	contain	a	5	characteristic	(trading	in	excess	of	
limits)	as	they	already	have	an	8	characteristic?	

 What	would	this	event	possibly	look	like	if	it	happened	at	my	organisation?	

3.3	IMPLICATIONS	
This	emerging	operational	risk	framework	has	a	number	of	implications.	

The	first	is	that	risk	can	be	viewed	as	an	evolutionary	process	that	gives	rise	to	emerging	
risks.		This	will	be	the	case	whenever	the	underlying	system	is	a	complex	adaptive	one,	
rather	than	a	static	or	chaotic	one.		Investigating	the	evolving	characteristics	of	system	
events	in	the	past	can	provide	insight	into	our	understanding	of	how	emerging	risks	
might	occur	in	the	future.	

The	second	is	that	it	is	important	to	capture	multiple	characteristics	of	risk	events,	both	
in	terms	of	realised	historic	events,	as	well	as	forward	looking	events.		Valuable	
information	may	be	lost	if	risks	are	forced	to	be	assigned	to	only	single	categories	or	
characteristics,	which	may	be	the	case	if	risk	register	software	constraints	exist,	if	a	
prescriptive	risk	classification	framework	is	narrowly	defined,	or	if	the	emerging	risk	
identification	approach	is	biased	from	the	outset	to	focus	on	single	processes	or	risk	
silos.		The	quality	and	completeness	of	loss	data	collection	and	classification	processes	
become	critical	activities	in	the	emerging	risk	process.	

The	third	is	that	the	risk	taxonomy	can	be	determined	objectively	from	the	data,	rather	
than	being	defined	prescriptively	in	an	ex‐ante	sense.		Risk	taxonomies	are	almost	
always	defined	on	the	latter	basis,	resulting	in	linear	structures,	which	is	appropriate	
whenever	system	complexity	is	low.		However	humans	tend	to	overly	simplify	situations	
where	there	is	complexity,	losing	valuable	information	in	the	process.		By	defining	the	
risk	taxonomy	objectively	through	this	framework,	we	are	able	to	map	the	
interrelationships	and	connectivity	between	different	risk	branches,	to	gain	insight	into	
how	risk	events	are	truly	related.	

This	is	closely	related	to	the	discussion	on	the	boundary	between	risk	classes.		Whilst	it	
is	a	natural	human	response	to	try	to	carve	everything	up	neatly	into	independent	risk	
silos,	with	risks	such	as	operational	risk,	it	is	not	quite	as	appropriate	to	do	so	because	of	
the	high	degree	of	interaction	with	other	risk	types.		The	Société	Générale	rogue	trading	
event	is	a	good	example	here,	as	there	are	clearly	elements	of	market	risk,	operational	
risk	and	liquidity	risk	involved	in	the	generation	of	the	final	loss	amount.		We	suggest	
that	it	is	necessary	to	move	beyond	the	traditional	silo	view	to	understand	and	
ultimately	to	manage	risks	that	span	multiple	silos.	

The	final	implication	is	that	the	above	framework	provides	a	structured	way	of	
addressing	emerging	risk.		It	is	another	lens	through	which	we	can	possibly	gain	insight	
into	future	emerging	risk	events	that	we	haven’t	yet	seen	and	when	we	are	not	sure	
exactly	what	we	should	be	looking	for.	
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5. DISCUSSIONS	
Whilst	risk	is	considered	by	many	to	be	just	a	social	construct,	it	can	be	argued	that,	like	

money,	 risk	 is	 treated	 as	 though	 it	 exists,	 grows,	 interacts	 and	 has	 value.	 Risk	 is	

essentially	real	and	alive;	people	act	and	make	decisions	on	it,	and	it	evolves.				

One	claimed	merit	of	a	phylogenetic	analysis	is	that	it	provides	a	unique,	unambiguous	

and	objective	classification	solution	(McCarthy	et	al.,	2000).	Ridley	argued	that	‘Cladism	

is	 theoretically	 the	 best	 justified	 system	 of	 classification…	 and	 has	 a	 deep	 philosophic	

justification…	(Ridley,	1993)’.		

Our	 phylogenetic	 approach	 to	 risk	 analysis	 described	 here	 satisfies	 the	 objectivity	

criteria	in	social	research,	which	requires	that	different	rational	people	would	obtain	the	

same	result	under	independent	investigations	(Bryman,	2008).		There	is	a	possibility	of	

people	obtaining	diverging	results	if	they	cannot	agree	on	the	characters	of	risks	in	their	

original	 inputs	 for	 the	 analysis.	 Secondly,	 applying	 inappropriate	 algorithms	 and	 not	

testing	 the	 model’s	 robustness	 can	 lead	 to	 the	 dissimilarities	 between	 entities	 being	

identified	 within	 a	 cladistic	 classification.	 However,	 we	 believe	 the	 approach	 can	

effectively	 present	 data	 in	 an	 unbiased	 way	 that	 is	 accessible	 to	 a	 wider	 range	 of	

potential	 users,	 thereby	 bringing	 greater	 transparency	 to	 decision‐making	 processes	

(McCarthy	et	al.,	2000).		

The	structure	of	cladograms	and	the	associated	sub	trees	have	significant	 implications	

for	 both	 scientific	 and	 practical	 risk	 management.	 Once	 risks	 are	 positioned	 in	 a	

cladogram,	 the	 comparisons	 of	 their	 characters	 are	 established	 so	 that	 people	 can	

identify	the	common	properties	and	distinguish	individual	attributes,	thereby	allowing	

for	 reasonable	 hypotheses	 to	 be	 made	 (Andreatta	 and	 Ribeiro,	 2002).	 Phylogenetic	

analysis	 reveals	 reliable	 evolutionary	 information.	 Without	 this	 form	 of	 analysis,	

evolution	 studies	 are	 more	 or	 less	 based	 on	 pure	 predictions	 (Gould,	 1999).	 With	

phylogenetic	 risk	 knowledge,	 people	 can	 understand	 the	 order,	 rate,	 direction,	 and	

diversity	 of	 risk	 evolution	 and	 hence	 obtain	 greater	 insight	 into	 their	 risk	 system.	

Additionally,	 this	 type	 of	 analysis	 can	 articulate	 a	 robust	 roadmap	 of	 evolution.	 As	

pointed	out	by	Mitleton‐Kelly,	 the	evolution	behaviours	of	 a	 complex	 adaptive	 system	

make	 the	 system	 path	 and	 history	 dependent	 (Mitleton‐Kelly,	 2003).	 In	 other	 words,	

phylogenetic	 analysis	 demonstrates	 how	 individual	 risks	 have	 reached	 their	 current	

state	and	indicates	potential	ways	in	which	risks	and	the	risk	system	will	evolve.		
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Risk	management	 often	 encounters	 a	 new	 risk	 with	 very	 limited	 information.	 In	 this	

case,	 people	 are	 likely	 to	 use	 heuristic	 knowledge	 to	 make	 estimations,	 leading	 to	

possible	 biased	 judgements	 (Goodwin,	 2004).	With	 the	 help	 of	 phylogenetic	 analysis,	

such	 a	 problem	 can	 be	 relieved,	 to	 some	 extent,	 because	 cladograms	 are	 based	 on	 a	

binary	 description	 of	 an	 organism’s	 characters	 and	 such	 characters	 can	 be	 utilised	 to	

gain	a	comprehension	of	the	new	risk.	As	a	consequence,	a	new	risk	cladogram	can	be	

constructed	which	contains	this	risk.	The	properties	of	the	new	entry	are	supposed	to	be	

similar,	although	not	necessarily	identical,	to	its	neighbours	and	hence	this	will	allow	for	

more	rational	predictions	of	how	this	risk	behaves.		
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6.	CONCLUSION	
In	the	ever	increasing	complexity	and	interrelatedness	of	the	business	environment	it	is	

unhelpful	 and	even	misleading,	 to	manage	 risks	 as	a	 collection	of	 isolated	events.	The	

interconnected	 nature	 of	 risks	 should	 be	 addressed	 holistically	 in	 risk	 management	

analysis,	 particularly	 in	 enterprise	 risk	management	 (ERM).	 Management	 approaches	

should	actively	try	to	understand	the	whole	system	of	risks,	not	the	aggregated	sum	of	

the	 risks.	 The	 authors	 of	 this	 paper	 endeavoured	 to	 solve	 this	 problem	 by	 looking	 at	

evolutionary	analysis	methods	from	biology.	

Traditional	 risk	 methods	 invariably	 require	 the	 classification	 of	 risks	 according	 to	 a	

single	 dominant	 characteristic.	 This	 immediate	 loss	 of	 information	 makes	 the	

subsequent	 analysis	 of	 risk	 behaviour	 problematic,	 and	 significantly	 less	 useful.	 By	

retaining	the	richness	of	multi‐characteristic	classification	the	authors	have	shown	that	

phylogenetic	 analysis	 provides	 a	 more	 appropriate	 scientific	 basis	 for	 understanding	

risk	 development,	 consistent	 with	 the	 view	 of	 risk	 as	 the	 emergent	 property	 of	 a	

complex	adaptive	system.	

Risks,	 like	 organisms,	 can	 be	 classified	 in	 accordance	 with	 their	 evolutionary	

relationships	 to	 obtain	 insight	 and	 knowledge	 regarding	 the	 patterns	 that	 emerge	

through	 phylogenetic	 analysis.	 A	 risk	DNA	 can	 be	 achieved	 and	 as	 in	 biology	 it	 could	

start	to	unlock	some	of	the	deep	interconnected	secrets	of	complex	risk	behaviour,	and	

our	perceptions	of	it.	The	authors	have	reviewed	relevant	bioinformatics	literature	and	

recommended	 the	parsimony	algorithm.	A	 real	world	 case	 study	has	been	 carried	out	

with	 the	 aim	 of	 explaining	 the	 process	 and	 inviting	 discussions.	 The	 case	 study	

demonstrates	 the	 process	 of	 classification	 and	 how	 emerging	 risks	 may	 evolve	 and	

adapt.	There	are	issues	with	data	quality	in	the	risk	arena	and	computational	efficiency	

of	large	risk	matrices,	validation	and	interpretation	of	complex	trees.	Further	research	is	

needed	in	these	areas	and	close	attention	to	developments	from	biological	sciences	may	

provide	some	partial	solutions	to	these	concerns.		
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