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EXECUTIVE SUMMARY 

Low-frequency, high-impact events are occurring at a much faster rate than anticipated by traditional risk 
management assessment techniques, disrupting businesses, their performance and long-term viability. 
Recent examples of such systemic events include 2003 US Power Grid failure (est. cost= 10 billion USD; 
BP’s 2006 Deepwater Horizon oil spill (est. cost = 40 billion USD); 2008 Lehmann Brothers collapse (est. 
cost = 2.2 billion USD); 2010 Iceland volcano impacting air flights (est. cost= 2.13 billion USD) and 2013 
Tesco horsemeat scandal.  

Despite contextual differences, complex network science provides a framework for understanding such 
large-scale, systemic events. In doing so, the interdependent nature of risk is highlighted, compared to the 
traditional view of risk independence. By shifting the focus from assessment of individual risks towards 
understanding the interdependency of the underlying network, exposure to systemic risk can be assessed 
and subsequently minimised. Network analysis provides the key in: 

• Assessing the robustness and resilience of an organisation to systemic risk, based on the extent, 
and nature of its underlying network.  

• Measuring the susceptibility of an organisation to systemic risk in an auditable, objective and 
quantitative way.  

• Identification of key drivers of systemic risk and mitigations measures that can be applied at a 
local and/or global level.  

• Monitoring organisational changes that may alter the network architecture in such a way as to 
raise the exposure of the organisation’s to systemic risk. 

The following document is complementary and is intended for circulation within your organisation. It ex-
pands on the aforementioned points by providing a non-technical overview, along with examples on how 
these techniques have been applied in practice. It further strives to ignite a debate around the role of 
individual organisations in stabilising the environment in which they operate, an appeal to both regulators 
and individual business. 
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Part I: Systemic Risk Drivers 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exposure to systemic risk is dependent on the capacity of a system to sustain a number of dynamical 
processes. These dynamical processes can be considered as the drivers of systemic risk and come in 
two distinct flavours: (a) individual node removal and (b) failure cascades – see upper right and lower 
right figures above respectively. 
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1. INTRODUCTION 

Systemic risk is the potential of having interdependent failures, which emerge through the interconnec-
tivity within a networked system, whether it is a collection of people, processes or technological artefacts. 
As such, their potential damage on an organisations performance is immense, potentially threating its 
survival. Interestingly, singular systemic events are capable of initiating spectacular cascading failures, 
often with unpredictable and catastrophic impacts, such as electricity grid black outs or collapse of finan-
cial markets.  Importantly however, interconnectivity is a necessary but insufficient condition for the 
emergence and propagation of systemic risks – as with all, the devil is in the detail.  To further stress this 
point, it is not whether a system exhibits a degree of interconnectivity, but rather the specific form that 
this interconnectivity takes. 

Interestingly, networks described by highly ordered, or conversely, random architectures are less likely to 
be affected by systemic events materialising.  Nonetheless, such resilience comes at the cost of reduced 
efficiency due to the increased levels of redundancy that defines ordered or random networks (Wang and 
Chen, 2002).   To counter this loss in efficiency,  the majority of real world networks are (either by design 
or evolution (Barabási, 2012)) finely tuned between the two extremes, leading to the enhanced sensitivity 
of real-world networks to systemic threats, These are described by complex networks, where normal dis-
tributions go out the window and heavy tails becoming the norm (see Figure 1). Under these conditions, 
systemic risk is a real threat, where a single tree failing can induce extensive black outs; a lighting strike 
can change the status quo of an entire market; a factory fire can bring down an automotive manufacturer  
and the failure of a single financial institution can trigger a financial meltdown. 

 

Figure 1: Number of involved firms on single loss events over a period of 6 years. A straight line on a log-log scale 
highlights the heavy-tail nature of the distribution. This is contrast to what one would normally expect, where on 
average, a firm’s exposure would be limited to very few loss events (Ellinas et al., 2015a). 

Since the 2007-2008 financial crisis, the Bank of England has been actively involved in understanding the 
drivers of systemic risks, along with impact to both national and global economic networks in the hope of 
introducing effective governance and built-in robustness (Haldane and May, 2011). The real challenge to 
such work comes from understanding the system-level contribution of individual businesses in terms of 
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the probability of triggering systemic risk.  The issue for regulators therefore is not whether an individual 
company is too big to fail, but whether it is too systemic to fail, where its failure can set-off a domino of 
subsequent failures.  

Similarly, large organisations have the same governance dilemmas, where individual, yet tightly-coupled, 
business units can trigger systemic risk. Modern businesses are increasingly interconnected in sophisti-
cated ways through supply networks, customers, and technologies, to name just a few. Whilst Enterprise 
Risk Management (ERM) initiatives have been successful in identifying where and when connections arise, 
an evaluation of the consequent systemic risk is a continuous challenge. A novel way of tackling this chal-
lenge requires an appreciation of the emergence of tipping points in the operation of organisations, along 
with evaluating the effectiveness/efficiency of a wide range of possible mitigation measures (e.g. appro-
priate culture, containment mechanisms, supplier management etc.).  

Network science has emerged as the main tool of scientific enquiry around the effect of interconnectivity 
and interdependence within business-related networks (Barabási, 2009). As such, pragmatic guidance can 
now be provided on systemic risk management, adding new approaches for risk practitioners and conse-
quently results in added value by: 

• Highlighting key aspects of interconnectivity and how they dictate the exposure of an organisation 
to systemic risk. 

• Providing background information on the construction of network models. 
• Helping to understand the nature of systemic risk. 
• Recommending ways for managing sources of systemic risk.   

2. SYSTEMIC RISK 

Through a network lens, systemic risk is a macroscopic property that emerges due to the non-linear inter-
actions of components (or agents) at a microscopic level. These interactions are captured by the networks 
structure, and can be the result of empirical observations (e.g. insurance claims, contractual links etc.) or 
artificially generated the use of standard network models (see Part II).   

To provide a quantitative measure, one can shock each individual node and evaluate its impact on the 
overall network, based on how many subsequent nodes are affected. The nature of the perturbation is 
important, with two distinct mechanisms dominating: 

1.  ‘Removal’ of individual nodes, manifesting in a number consecutive instances e.g. consider a ma-
licious hacker targeting and shutting down parts of an IT system; a factory being taken out of a 
supply chain due to a fire etc.  

2. ‘Contamination’ of individual nodes e.g. consider the impact of a single task failing during a project 
delivery; a contaminant entering a supply chain; a disease spreading through a population; a piece 
of information triggering a reputation threat etc.  

In the first case (‘removal’), an individual node is selected (either by a random or in an informed way) and 
is removed from the network. As a result of its removal, all links that were attached to it are also removed, 
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creating a ‘structural hole’ into the network. Its impact can be measured by using various indicators, in-
cluding the number of remaining components and/or nodes left within the network. By applying this 
method,  Albert et al. (2000) uncovered the Achilles’ heel of the Internet and WWW – a property com-
monly referred to as ‘Robust-Yet-Fragile’ (RYF); a direct consequence of its highly-heterogeneous network 
structure (what is referred to as scale-free, see Part II). Several recent systemic failures can be attributed 
to this ‘RYF’ property –examples include the loss of 400 million USD in sales by Ericsson following a lighting 
strike to a single factory. Under this view, the effect of such ‘Acts of God’ can be minimised by focusing 
on the capacity of a network to sustain this node removal process rather than trying to predict the occur-
rence of this improbable cause. 

For the second case (‘contamination’), consider a domino effect metaphor where, each domino (a node) 
is affected in some way and, under a given set of conditions, is capable of affecting its neighbouring dom-
inos, resulting in a possible failure cascade. The larger the failure cascade is, the greater the systemic role 
of the node. By applying this methodology, recent work highlight that  

a) Large failures may follow the exact same dynamics as small failures, making them unrecognisable 
before their full impact has been unravelled (Bak and Paczuski, 1995). This does emphasise the 
importance of path dependency and a shift of focus from trying to predict the impact towards 
understanding the exposure of a system. 

b) A single node failure is capable of inducing a significant amount of damage to the entire network, 
regardless of size. Theoretically, the magnitude of this damage can be infinite; practically, this 
indicates that the possible size of the largest failure is limited by the size of the network rather 
than the probability of occurrence. 

c) The probability of an increased amount of systemic risk being materialise is exceedingly high. 

These elements become particularly important where traditional risk mitigation strategies provide limited 
support for mitigating these particular forms of risk. For example, consider the case of project risk man-
agement, where risk is typically mitigated via the deployment and analysis of project schedules (Zwikael 
and Sadeh, 2007) e.g. using variants of Critical Path Method (CPM) and Program Evaluation and Review 
Technique (PERT). These techniques assume linearity (Williams, 1999), yet recent work has shown that 
projects are capable of sustaining non-linear failures (Ellinas et al., 2016, Ellinas et al., 2015b), and in ef-
fect, suffering from the aforementioned points (a) – (c). 

The following section will use a number of real world examples to elaborate on the distinct nature of these 
two mechanisms.  

2.1.  SYSTEMIC RISK: THE NODE REMOVAL CASE 

Numerous networks achieve a great deal of their functionality merely by their capacity to connect e.g. 
supply chains, IT systems, communication systems etc. For these systems, nodes (components) of the 
network can become non-operational in a number of ways – factories can become non-functioning; serv-
ers can be taken offline for maintenance (or taken out maliciously) etc. As a consequence, the impact of 
such a local event may have a disproportional effect and accordingly, lead to systemic risk materialising. 
Such events may arise under a variety of scenarios: a node may be removed randomly (e.g. corresponding 
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to regular maintenance in which any given component is routinely taken out of the system) or through 
careful attack (e.g. a hacker targets the most connected part of an IT system hoping to induce maximum 
damage). To model the random removal scenario, a node is randomly chosen and subsequently removed 
from the network – this process is repeated until all nodes are removed. In the targeted removal, the node 
to be removed is based on the number of connections that it possesses (i.e. most connected node is re-
moved first, followed by the second most connected etc.) – again this process is repeated until all nodes 
are removed. For both cases, a robust system would experience a drop in its performance in a linear way, 
suggesting a linear relationship between cause and effect. If this was not the case, then one would observe 
the disproportional deterioration of the system as the node removal process was taking place – in other 
words systemic risk would be unravelling. Let us explore this concept further through the means of a 
network that captures the tasks responsible for delivering a large project. 

Figure 3 captures the impact of the node removal process by monitoring the connectivity of the network, 
in terms of connected components (Figure 3, left) and connected nodes (Figure 3, right). In this case, the 
random removal case is represented by the red plot; the targeted removal is captured by the black plot.  

 

Figure 3: The impact of node removal is captured by monitoring the number of connected components (left subplot) 
and connected nodes (right) that remain in the network. Note how the system is increasingly robust under the ran-
dom removal process (black plot), showing a slow, linear-like reduction in its performance. Conversely, the network 
is increasingly fragile under a targeted node removal, leading to the complete disintegration of the network less than 
half time steps. 

Two key features are worth highlighting: 

1. Under the random case, the response of the network is approximately linear, indicating a cause 
and effect (e.g. by taking out 100 nodes, the overall number of connected nodes and forms the 
network is approximately 100 less, Figure 3, right). In other words, the network is quite robust 
under random nodal removals, and no systemic risk materialises. In the case of a targeted node 
removal, the converse is true indicating that the system can also be rather fragile (and thus the 
term “Robust-Yet-Fragile”). Specifically, by removing 100 nodes, the overall number of nodes de-
creases to approximately 600 – that is roughly 300% increase in damage. Taken to the extreme 
case, the network is completely dismantled with less than half effort required by the random case. 



The Milliman Awareness Series  

7 

 

In other words, if nodes are removed in a given order (as identified using various levels of infor-
mation such as its node degree) an entire system can experience rapid deterioration – a clear 
indication of systemic risk at play. 

2. The ability to construct early-warning signs of systemic risk is highly dependent on the measure 
used to capture the state of the network. For example, consider the case where a decision maker 
can only monitor the number of components of a system (Figure 3, left). Interestingly, red and 
black plot lines only show significant divergence after about 8% of the system has already been 
removed. Hence, if simulations steps were translated to time, monitoring the number of compo-
nents will provide little information on whether a random (non-systemic) or targeted (systemic) 
case of node removal was taking place. As a result, one would be left to the dark with respect to 
the extent upon which mitigation action should be deployed. In contrast, by better understanding 
the architecture of the network, one would be able to appreciate the exposure of the network to 
such systemic events, and consequently deduct whether the event is minor or major.  

In summary, node removal can provide a possible mechanism in which systemic risk can emerge. Im-
portantly, the exact same system can exhibit significantly different causal relationships. As a result, know-
ing whether failure can lead to systemic risk becomes exceedingly hard when the focus is on observe-and-
react approach. In response, the concept of limiting the exposure to systemic failures (e.g. by focusing on 
the uniformity of a network’ features) can provide a more useful perspective in shielding a network from 
such systemic failures. Importantly, it is not a question of when the next systemic failure may take place, 
but whether the structure of a network allows for a systemic failure to arise – a shift in focus from risk 
prediction to risk exposure.  

2.2.  SYSTEMIC RISK: THE FAILURE CASCADE CASE 

Consider a set of dominos, arranged in an intrigued way. Clearly, the number of dominos that can be 
affected by the fall of any one domino is a function of its location, with the first domino having the capacity 
to affect all dominos and the last being able to effect none. This “domino effect” underpins a number of 
phenomena in various complex socio-technical systems, ranging from the power-grid failures to financial 
system meltdowns  and the emergence of social norms (Vespignani, 2012). This cascading behaviour has 
been attributed to a threshold mechanism (Granovetter, 1978) and can provide a modelling framework 
for capturing this complex behaviour in a tractable way (Ellinas et al., 2015a). 
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Figure 4: Example on how the failure of a single node (red) can propagate throughout the network, subsequently 
impacting other nodes (blue) which on first sight, are not directly linked. Figure corresponds to the largest cascade 
possible in a real-world engineering project (Ellinas et al., 2015b). 

Under this view, systemic risk is captured by the number of nodes that can be affected by the failure of a 
single node, as a ratio of the total number of nodes. By doing so, single nodes responsible for triggering 
large cascades, or nodes that are more likely to be affected by one, can be identified. Figure 4 precisely 
captures this effect across a real-world engineering project, abstracted in the form of an activity network. 
In this case, every node corresponds to an activity, with every link indicating a dependency (e.g. node 𝑖𝑖 
being connected to node 𝑗𝑗 means that the start of activity 𝑖𝑖 depends on finishing activity 𝑗𝑗). By shifting the 
focus of analysis from the local to the global scale, the capacity of a network to sustain systemic risk, along 
with its probability of occurring, can also be obtained – see Figure 5. As such, the effect of local/global 
mitigation (e.g. increase in resource allocation/change in network structure) can be quantitatively as-
sessed, providing insight on how such failure cascades can be contained in an effective and efficient way.  
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Figure 5: Cumulative probability distribution of failure cascade sizes. The probability (y-axis) of having a failure cas-
cade equal or greater than a given size (x-axis) is shown in blue; the same probability is shown under the case of the 
cascade sizes being Normally distributed (red). Note that the cascade size is given as a proportion of the overall 
number of nodes.  

Consider Figure 5, which captures the probability of having a cascade of a given size, under the case of a 
cascade model (blue plot) modelled against of an activity network. A null model which represents failure 
cascade sizes drawn from a Normal distribution are also shown for comparison (red plot). Through this 
example, the manifestation of systemic risk can be captured by considering the total number of nodes 
that can be affected by a single node failing. For example, in Figure 5, left, the failure of single nodes can 
impact roughly a tenth of the entire system (90 nodes). Clearly, nodes that are capable of triggering such 
failures are of systemic importance and need to be identified and accounted for. It is worth noting that 
once such model has been set up, the effectiveness and efficiency of various mitigation actions (applied 
at either the local or the global level, in a uniform or targeted fashion) can be assessed, supporting a 
variety of decision making functions.  

Three key aspects of the results captured by failure cascades must be highlighted: 

• The process that drives these cascades is essentially self-contained, indicating that no great exog-
enous force is needed to induce large systemic failure (Bak and Chen, 1991). As a result, both 
small and large failures can be shown to follow the exact same dynamics, challenging the ability 
to predict large failures (Ellinas et al., 2015a). Nonetheless, by focusing on the structure of the 
underlying system, the exposure of the network can be numerically explored and assess whether 
a network is prone to such failures.  

• Regardless of the level of mitigation action, the cumulative probability distribution is heavy-tailed, 
and resembles a power-law. As a result, the extreme variance that describes this class of distribu-
tions, the average size of a failure cascade provides no useful information on the scale of damage 
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that a network can sustain. In fact, uniform regulatory frameworks and/or risk mitigation strate-
gies should not be applied uniformly to all nodes – some nodes have a limited impact, yet other 
have an extraordinary capacity to impact the entire network and hence, should be individually 
treated. Identifying them and their role within the network provides the first key step in shielding 
against systemic risk.  

• The probability of encountering small failure cascades is significantly overestimated by traditional 
models (what corresponds to the red plot in Figure 5). As a result, decisions made on models that 
do not explicitly capture the intricacies of the underlying networks (e.g. CPM, PERT) can lead to 
overspending. Perhaps more importantly, the probability of having large scale failures (i.e. sys-
temic risk) is significantly underestimated by traditional models – examples of divergence of over 
two orders of magnitude are typical (i.e. a systemic failure being underestimated by a factor of 
100). Furthermore, the size of the largest possible failure cascade is significantly underestimated 
by models that fail to capture the underlying interconnectivity  

In summary, failure cascades can be used as a second mechanism by which systemic risk can be modelled. 
Evidently, the probability and impact of these types of systemic failures is surprisingly high; models that 
ignore the effect of interconnectivity substantially underestimate both. In search for mitigation against 
such events, the efficiency of local mitigation (applied uniformly or in a targeted manner) can be assessed; 
increasingly involved measures for mitigation can be deducted by considering specific features of the net-
work and subsequently engineering them in order to efficiently reduce exposure to systemic risk.  
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Part II: Networks  
  

 

Everything is connected with everything else – this is an often cited explanation on how large-scale, 
systemic events manifest themselves. Yet, this is not entirely true, as the architecture of the resulting 
networks is at the very core of these events. As such, a brief overview of the three main network models 
(‘random’, ‘small-world’ and ‘scale-free’) is presented. 
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1. A BRIEF OVERVIEW OF NETWORKS 

In 1963, Stanley Milgram set out an experiment to assess an increas-
ingly popular conjecture – that the social world was a rapidly shrink-
ing medium due to the increased social connectedness, as enabled 
by technological advances. To his great surprise, Milgram reached a 
stunning conclusion – everyone was connected to everyone else on 
an average of 6 intermediate steps (Milgram, 1967). This result is 
now widely known as the “Six Degrees of separation”, after the 
name of a theatrical play that popularised the idea. This surprisingly 
low number has captivated the imagination of mathematicians, so-
ciologists, physicists and computer scientist up to this date. In fact, 
a similar experiment that took place in Facebook (a widely used so-
cial network platform), involving 5.8 million users concluded that 
the average degree of separation was 5.73 – a value surprisingly 
close to the one estimated by Milgram over 40 years ago.  

Widely popularised by social platforms, networks play a crucial role 
in our lives – examples range from the human brain and global mar-
kets to supply chains and projects. The study of these networks (or 
graphs) is historically attributed to the mathematician Leonhard Eu-
ler and his attempt in devising a method for crossing all seven 
bridges of Königsberg, published in 1735. The adopted approach in 
tackling this problem was what is now commonly referred to as 
graph theory. Despite its numerous branches, random graph theory 
as introduced in the seminal work of Erdos and Rényi (1960) is closer 
to its modern successor. In their work, the concept of the random 
network (or ER networks, after the initials of the two authors) was 
introduced.  

A random network is composed of a set of nodes (or vertices), con-
nected by a set of links (or edges). Each node receives a link with a 
probability p, independent from any other node. As a result, the de-
gree distribution of the network follows a Gaussian distribution, 
with the average degree serving as an adequate description of the 
state of the network. An important aspect of a random network is 
its relatively low clustering, resulting in large average path length 
(or what was previously referred to as degrees of separation). 
Clearly, this is in contrast to what has been noted by Milgram, so 
why do we bother with random graphs to begin with?  

Some Formal 
Definitions 
The system of interest (e.g. 
supply chain, infrastruc-
ture, project, firms etc.) 
can be mapped as a net-
work (or graph). It is de-
fined as 𝐺𝐺 = �{𝑁𝑁}{𝐸𝐸}� 
where every component 𝑖𝑖 
can be abstracted as 
node  𝑖𝑖,  where  𝑖𝑖 ∈ 𝑁𝑁 .Simi-
larly, a dependency be-
tween component  𝑖𝑖  and  𝑗𝑗 
are captured by an (un)di-
rected link 𝑒𝑒𝑖𝑖 ,𝑗𝑗, 𝑒𝑒𝑖𝑖,𝑗𝑗 ∈ 𝐸𝐸 

The structure of the entire 
network can be captured 
by the so-called adjacency 
matrix  𝐀𝐀 , where 𝐀𝐀(𝑖𝑖, 𝑗𝑗) =
1 if there is a link between 
node 𝑖𝑖 and 𝑗𝑗; and 0 other-
wise. Finally, note that the 
entry 𝐀𝐀𝑘𝑘(𝑖𝑖, 𝑗𝑗)  will provide 
the total number of paths 
between  𝑖𝑖  and  𝑗𝑗  of 
length 𝑘𝑘. 

For expansive technical re-
views, see  (Albert and 
Barabási, 2002, Boccaletti 
et al., 2006, Dorogovtsev 
and Mendes, 2002, 
Newman, 2009, Newman 
et al., 2006, Newman, 
2003) 
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The value of random networks lies at this very distance from 
real-world, purposeful networks – an explicit illustration of 
pure randomness. If one is able to show that an aspect of a 
network significantly deviates from its random equivalent, 
then it is worth further exploration. In fact, the findings of 
Milgram are one such example - the noted value for the de-
grees of separation (or average path length) is surprisingly 
low, compared to what is predicted by its random counter-
part. Importantly, similar behaviour has been noted in sev-
eral real-world systems (Watts and Strogatz, 1998), highlight-
ing the practical relevance of the concept – these networks 
were subsequently called ‘small-world’ networks (in tribute 
to Milgram’s original observation).  

This ‘small-world’ effect emerges as the structure of the net-
work transitions from complete order (what is referred to as 
a lattice structure) to disorder (represented by a random 
graph). Found within the middle, ‘small-world’ networks have 
high clustering, yet low average path lengths – a result that 
leads to the apparent connectedness of a social network. Im-
portantly, the degree distribution of these networks is equiv-
alent to that of random networks – a Normal distribution.  

This assumption of Normal degree distributions was subse-
quently challenged by the seminal work of Barabási and 
Albert (1999), who used empirical observations to illustrate 
that the Internet significantly deviates from this assumption, 
by being heavily heterogeneous. Specifically, nodes with a 
degree several orders of magnitude greater than the average 
degree were observed – clearly contradicting its random (and 
‘small-world’) counterpart networks. In fact, these observa-
tions were noted throughout numerous systems, with heavy 
tail1 distributions being the rule rather than the exception. 

                                                                   
1 Despite the wide reference to power-laws, the reader is warned that the majority of these claims have been 
shown to be poor estimates - see CLAUSET, A., SHALIZI, C. R. & NEWMAN, M. E. 2009. Power-law distributions in 
empirical data. SIAM review, 51, 661-703. 

Being Scale-Free 
Being able to classify a network 
as scale free has numerous 
practical implications, includ-
ing: 

1. Observed interconnectivity 
cannot be attributed to ran-
domness and hence, inevita-
bly underpins a number of 
key aspects. As a result, tools 
and models that limit their 
focus on individual aspects 
of a system need to be en-
riched, complex networks 
being one of the most suc-
cessful framework for doing 
so (Newman, 2011). 

2. The concept of having a 
characteristic (i.e. average) 
value to describe a given 
property of the system is 
meaningless, as there is no 
typical behaviour to which 
the majority of nodes will 
adhere to. A typical example 
is the inability to confidently 
estimate the contribution 
(or importance) of individual 
nodes to the connectivity of 
the overall network based its 
average degree.  

3. The probability of encoun-
tering extremities (e.g. sup-
per-connected nodes) is ex-
ceedingly large. As a result, 
single points of failure can 
emerge. 

Network Measures 
Network measures can be used 
to meaningfully capture, and 
subsequently quantify, im-
portant network measures.  

At this section we will define 
three widely-used measures: 
the degree distribution, cluster-
ing and average path length. 

Degree distribution 

A degree distribution is essen-
tially a histogram capturing the 
number of nodes that have a 
given number of connections.  
In the case of directed net-
works, a degree distribution for 
both incoming and outgoing 
connections is needed to cap-
ture the underlying connectivity 
of the network.    

In the case of random and ‘small 
world’ networks the degree dis-
tribution decays exponentially 
while ‘scale-free’ networks are 
defined by slow-decaying tails 
(often, power-law). 

Note that in the case of scale-
free networks, degree distribu-
tions are better illustrated 
through cumulative probability 
plots on a double log scale, in 
effect reducing the scattering 
effect at the tail.   
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These networks have been coined as ‘scale-free’ networks2 due to the absence of a meaningful average3 
that can describe the scale of the system.  

In summary,  

• Random networks are the simplest form of networks, described by high clustering, high average 
path length and Normal degree distributions. They are mainly used as benchmarks to identify 
aspects of a network worth further exploration, simply because they cannot have emerged by 
pure randomness.  

• ‘Small-world’ networks were introduced to explain the noted high clustering yet low average path 
length showcased by real-world networks; their degree distribution is also Normal. 

• ‘Scale-free’ networks were introduced to explain the significant deviations in the degree distribu-
tion of real-world networks; they are used to model the heavy-tail degree distributions found in 
numerous natural and man-made systems. 

Table 1 summarises the core difference between the three network models, in terms of the degree dis-
tribution, clustering and average path length (see side panel for definitions). Figure 2 further illustrates 
the core differences graphically. 

 

Table 1: Differences between the three network models 

 

                                                                   
2 It is worth noting that despite their pervasive nature, the mechanism of their occurrence is still debatable, 
whether being a result of pure luck (e.g. the “rich get richer” effect) or reason (e.g. topology reflects an optimisa-
tion attempt) BARABÁSI, A.-L. 2012. Network science: Luck or reason. Nature, 489, 507-508.. 
3 This is due to the extremely broad (in principle, infinite) variance that such distributions exhibit. 
4 Sensitive to other topological features as well. 

 Random  ‘Small-World’ ‘Scale-Free’ 
Degree Dis-
tribution Normal Normal Heavy-Tail (of-

ten, power law) 

Clustering High High   Low – High4  

Average 
Path 
Length 

High Low Lowest  
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Figure 2: Upper row illustrates the core difference between a random net-
work and a scale-free network, in terms of the degree distribution. In the 
random case, each node has more or less the same number of connec-
tions, while in the ‘scale-free’ case, some nodes (coloured blue) have a sur-
prisingly high number of connections. Lower row illustrates the core dif-
ference between the random network and the ‘small-world’ network. In 
the random case, clustering and average path length is small. On the other 
hand, clustering in the small-world network is high, yet average path 
length is low due to the emergence of shortcut connections, capable of 
connecting distant parts of the network. Figures adapted from (Barabasi 
and Oltvai, 2004, Watts and Strogatz, 1998) 

 

 

 

 

 

 

 

 

Network Measures  
Clustering 
Clustering refers to how many 
closed triangles exist within a 
network. In the context of social 
networks, you can think of it as 
the likelihood of two of your 
friends to know each other. As 
such, high clustering suggests a 
rather dense network, where 
navigation is rather inefficient 
due to the large number of links 
that need to be traversed to 
range any node – this is typical 
for a random network. 

Average path length 

Average path length measures a 
global property of the network. 
Specifically, it refers to the 
number of links that need to be 
traversed across every pair of 
connected nodes, averaged 
across all paths.  

Normally, one would expect 
that increased clustering would 
also result to high average path 
length (as more steps are re-
quired to traverse through the 
dense network). However, 
Watts and Strogatz (1998) have 
illustrated that this need not be 
the case, as shortcuts can be in-
troduced to dramatically re-
duce the average path length 
whilst maintaining relatively 
high clustering – this is the cele-
brated ‘small-world’ phenome-
non.  

 



The Milliman Awareness Series  

16 

 

Part III: Bringing it all together  
Network models are becoming increasingly prominent in understanding the nature of systemic risk. While 
conventional tools focus on identifying correlations (e.g. regression models), complex networks provide a 
framework for understanding the casual mechanism that drives systemic risk. Specifically, two distinct 
processes – node removal (Section 2.1) and cascading failures (Section 2.2) – have been proposed that 
can lead to systemic failures from modest, local failures.  In practice this means that medium-low impact 
risks should be re-evaluated for their ability to cause very large impacts and that these cascading type 
failures have a dramatically reduced likelihood.   

Both processes emphasize the inability to confidently assess the probability of such failures from occur-
ring, at least in an a priori basis. In other words, global failure of a system or organisation (i.e. systemic 
risk) follows the exact same dynamics as local ones; making them effectively indistinguishable. As a result, 
it challenges two key steps in any risk management process – that of identification and prediction. So what 
do we do when what matters can neither be identified nor predicted? 

By focusing on the exposure of the whole system, one can begin to tackle this challenge. Specifically, 
highly heterogeneous networks (e.g. ‘scale-free’) have been shown to be susceptible to systemic risk to a 
much greater extent than homogeneous networks (e.g. random; ‘small-world’).  Such distinct topological 
trademarks can provide proxies in which the exposure of a system to systemic risk can be examined. More 
explicitly, formal models that acknowledge these complex network topologies can be used to numerically 
explore the exposure to systemic risk, along with examining the efficiency and effectiveness of a large 
variety of mitigation techniques that can contain the impact of such events. Extensive databases and pow-
erful computational methods to utilise these models are now becoming widely available, enhancing deci-
sion making processes across a number of levels within organisations.   
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