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Abstract 

Empirical evidence of reported losses suggests that insurance firms are interconnected in 

a non-trivial way. As a result, systemic risk is a real possibility, where the failure of a 

single firm can have a disproportionate effect to the market by affecting firms connected 

to it. Systemic risk can be viewed as the result of a cascading process, as it unravels 

throughout a network structure. In response, this work presents a simple analytical model 

that can simulate this process. The model is subsequently tested upon an empirical dataset 

via the means of numerical simulations. Consequently, the systemic role of individual 

firms, both in terms of triggering a cascade or being affect by one, is established based on 

two novel indices; the Criticality IDX and Sensitivity IDX respectively. This article 

makes three main contributions. First, it provides a novel methodology for quantitatively 

and objectively assessing the systemic role of individual firms within the insurance 

domain. Second, it exemplifies the inability of traditional, firm-based information in 

serving as proxies for mapping these systemic effects. Thirdly, it provides a practical 

example where network-based information (e.g. Criticality IDX, Sensitivity IDX) can 

outperform firm-based information (e.g. Admissible Assets, Excess Capital) resulting to 

an increased efficiency in the decision making process. These findings strengthen the 

need to account for the interconnected nature of the domain while showcasing some of 

the potential benefits that can be harvested by doing so. 

Keywords: systemic risk, cascading process, complex networks, numerical modelling, 

decision making 

1. Introduction 

Systemic risk can be defined as the risk of having interdependent failures, as a result of a cascading 

process [1]. Such processes have been identified as the source of failure cascades (also known as 

“chain reactions”, “avalanches” or “domino effect”) in a wide variety of fields, ranging from 

epidemics to social contagion and inter-bank flows (see [2-5] and references within). In these 

examples, the failure of a single component (e.g. a social agent, a financial institution etc.) is capable 

of inducing a disproportionately large (in fact, theoretically infinite [6]) damage to the overall system. 

Clearly, these effects are driven by complex, non-linear relationships between these components, 

reflecting the intricate structures that underlie these systems. Such structure has been shown to 

regularly  balance between order and chaos [7]. Complex network theory, a descendant of graph 

theory[8], has recently emerged as a unifying approach in exploring the resulting dynamical processes 

(such as a cascading process) that underlie the behaviour of these systems [3, 7, 9]. Under this view, a 

large interactive system is abstracted as a network (or graph), where single components are abstracted 

as nodes, and their varying interactions captured through links – for an extensive introduction, see 

[10]; for comprehensive technical reviews see [11-13]. 
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The relevance of this approach in the general area of finance has recently been voiced by both 

academics and policy makers [14-16], as evidence of increased interrelatedness within the finance 

sector have recently emerged [17]. Yet, the practical application of such concepts is still scarce [18]. 

This works contributes in minimising this gap by presenting a simple framework in which the 

damaging aspects of interconnectivity can be assessed. Clearly, for this work to be of relevance to the 

insurance domain, the need for such approaches must first be established. To do so, empirical 

evidence of loss events, as recorded within the industry, will be used. From a network’s perspective, 

every loss event can be interpreted as a materialised failure cascade, where the number of involved 

firms corresponds to the cascade’s size. Hence, if interconnectivity is irrelevant, one would expect an 

exponential drop in the probability of encountering more than a few
e
 firms being affected by any such 

loss. 

 

Figure 1: The cumulative probability distribution plot of number of agents involved in a single loss event, as 

recorder within the ORIC database, over a space of 6 years. Empirical data (circles) can be closely matched by a 

straight fit line (dotted), suggestive of a power law distribution. In the context of this work, single loss event are 

considered to be materialised cascades, where the number of firms involved represents the size of the cascade.  

Evidently, this is not the case; Figure 1 presents the cumulative probability distribution of the number 

of firms involved in losses, as recorded by ORIC over a period of approximately 6 years
f
. Although 

the average number of involved firms (or cascade size) is merely 1.78, a divergence of up to 18 

standard deviations is noted – clear evidence of a heavy-tail. In fact, the noted straight line on the log-

log plot suggests
g
 a power law distribution [19], a signature feature of a wide range of complex 

systems [10, 19, 20]. Evidence of this sort make a strong case for the need to account for the 

emergence of systemic risk as surprisingly large failure cascades do happen. As such, the main 

research question (RQ) can now be posed: 

RQ: Can we quantitatively asses the capacity of a local firm in triggering a failure cascade? 

Naturally, the capacity of traditional, firm-based information in capturing these effects will also be 

assessed – such information includes the Admissible Assets (  ) and Excess Capital (  ) for each 

firm. For assessing them, an empirical dataset of 90 life-insurance firms will be used. Due to the 

                                                           
e
 Strictly speaking, this number should in fact be limited to one unique firm per loss event i.e. a δ distribution 

f
 Data captured from the ORIC loss database, capturing losses within the insurance industry, between 

12/01/2009 and up to 05/02/2015. A total of 1155 loss events are considered. 
g
 Further analysis of the tail suggest that a power law with an exponent of 3 is the best fit, yet results are non-

conclusive (goodness of fit using the KS test results to a p-value of 0.25; substantially larger than 0.05 yet still 

far from a perfect score of 1).   
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confidential nature of the industry, lack of data around the nature of the interconnections between the 

firms has led to an indirect way of constructing the underlying network (Figure 2).  

The contribution of this work is three-fold: Firstly, it provides a novel approach in assessing the 

systemic role of individual firm it arises from their interconnectivity. Though approaches of this sort 

have been introduced in various domains [21-26], they are largely underrepresented within the 

insurance domain. Secondly, as the impact of interconnectivity increases, traditional firm-based 

information is shown to be inadequate in serving as proxies for assessing the systemic role of each 

firm. In response, two novel indices are introduced; the Criticality IDX and the Sensitivity IDX. The 

former captures the capacity of each firm in inducing failure cascades; the latter capturing the 

probability of being affected by one such cascade. Thirdly, a comparative analysis in the performance 

of firm-based and network-based information is undertaken in the context of a firm acquisition 

example. As a result, the latter are shown to outperform the former, leading to more efficient decision 

making.  

The remaining paper is structured as follows: Section 2 provides the methodological background of 

this work; Section 3 presents the results around the resulting failure cascades, as triggered by local 

ones, along with an assessment on the capacity of firm-based information in serving as proxies for 

them. Section 4 discusses on theoretical implications of the results, before expanding on the practical 

implications of this work through an example. Finally, Section 5 will provide concluding comments 

and a perspective on aspects worth further development.   

2. Methodology 

2.1 Network Model  

A network can be defined as   {{ }{ }}, where every firm   is abstracted as node  , where    , 

and a link between node   and   is denoted as     , where       .  

In describing the attributes of every node  , an empirical dataset of 90 firms
h
 actively competing in the 

life insurance market of the UK will be used. Specifically, information regarding the grand total of 

admissible assets (  ) and excess of capital resource to cover LT business (  ), as recorded in 2013 

– see Table 1 for a representative sample. Note that firms have been anonymised. 

Table 1: A sample of the empirical information used 

Node ID Firm EC (GBP, thousands) AA (GBP, thousands) 

1 Firm1 13733 2523863 

2 Firm2 14035 47499 

3 Firm3 435816 53504847 

⁞ 

88 Firm88 3809 16748 

89 Firm89 198403 3628497 

90 Firm90 365884 35814080 

Due to the competitive nature of the industry, there is a notable lack of information around the nature 

of interactions between firms. As a response, an assumption needs to be made in order to construct 

set { }. Specifically, it is assumed that firms with comparable    invest in assets with similar 

                                                           
h
Information around subsidiaries have been aggregated under their respective parent firm 
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characteristics (i.e. volatility, risk etc.). In other words, larger firms have the capacity to invest in 

higher-risk, higher-return assets and hence, are more likely to be linked (Figure 2). As such, the 

resulting network is expected to have an assortative mix (i.e. highly connected nodes are more likely 

to be connected between each other) [27] and of heterogeneous nature, in terms of individual node 

degree. It is worth noting that recent work within the general domain of finance has focused on the 

use of trivial network architectures [9] as models for capturing a system’s connectivity pattern (e.g. in 

[18, 28] random graphs [29] are used; in [30] complete and ring networks are used). Under these 

models, a number of important assumptions are present, including that of degree homogeneity [31] 

and null mixing patterns
i
 [27, 33]. These assumptions are clear idealisations and cannot account for 

heavy-tail cascade distribution sizes [34]. Hence, we argue that even simple assumptions such as the 

one noted above brings these methodologies closer to reality and thus, increases their practical utility. 

 
Figure 2: Simple example on how the network of interactions between firms (solid line) is inferred based on the 

assets that they are exposed to (dotted line). 

Mathematically, the network generation process is driven by the probability of firm   and   being 

connected. The magnitude of this probability is considered to be a function of a firm’s    and the 

maximum    that exists within the system. Hence, it can be defined as: 

 (   )     ( (   )   )  
   

   
   

  
 

   

   
   

  
 

where   is the adjacency matrix, used to capture the structure of the network – it can be defined as 

 (   )  {
                                    

           
 

Due to the stochastic nature of the network generation mechanism, a Monte-Carlo approach will be 

adopted, resulting to an ensemble of subtly different network architectures. As a result, a total of 

1,000 networks has been generated and subsequently tested. 

2.2. Cascading process 

The impact of interconnectivity on the global system is to be assessed by artificially failing each 

node   and capturing the maximum number of nodes (i.e. cascade size) that are subsequently affected. 

Such failure cascades can be seen as the result of a cascading process as it unravels across the 

network. The threshold model, first introduced by Granovetter [21] to explain social unrest, has been 

widely used in simulating such processes across a wide range of domains, ranging from epidemiology 

[22-25] and finance [35, 36] to infrastructure management [37, 38]. The flexibility and universal 

                                                           
i
The use of non-trivial architectures, such as a scale-free network (see  [32] B. DasGupta and L. 

Kaligounder, "On global stability of financial networks," Journal of Complex Networks, vol. 2, pp. 313-354, 

2014. for an example) may still suffer from the null-mixing hypothesis, depending on the algorithm used to 

generate the network. For example, networks generated under the BA algorithm [32] leads to scale-free 

structures with a Pearson coefficient of 0 [34], indicating that the null-hypothesis still stands, even though the 

structure is far from being trivial. 
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applicability of this model suggests that it may provide the grounds for a unified modelling 

framework for exploring such processes [35]. As such, it is adopted throughout this work. 

The underlying principle of the threshold model is simple – every node   is assigned a state (  ) and a 

threshold (  ). A set of local rules is then formulated, dictating the impact of every interaction. In the 

context of the insurance market, the threshold of node  , at time  , can be defined as: 

  
        

Consequently, a firm with        is considered to be in a healthy state, captured by    . If at any 

one point       (e.g. due to a harmful interaction), then firm   is considered to have failed (      ) 

and can subsequently affect its neighbouring node(s)  . The magnitude of this impact is proportional 

to the size of the failed node   (i.e. its    ) and the number of nodes that will absorb the impact of its 

failure i.e. it’s degree   . As it follows, the new threshold of node(s)   can now be defined as: 

  
      

 

   
 

   

  
, where           

In the case of   
   , node   is considered to have failed and can sustain the cascading process by 

affecting its own neighbours. Conversely, if   
   , then the cascading process is stopped and the 

sized consequent failure cascade recorder. Control parameter   provides the means of controlling the 

impact felt by every node  , assuming     . In other word, it provides the means to artificially vary 

the extent upon which interconnectivity affects the capacity of firm   to operate. For example, 

increased exposure between firm   and   would correspond to a high   value. Naturally, the smallest 

failure cascade is expected to occur at    ; largest at      .  It is worth emphasizing that this 

mechanism is clearly a simplification – it is not the aim of this paper to provide a comprehensive set 

of conditions that may lead to an individual firm failing. Rather, it is to uncover the effect of 

(increased) interconnectivity on the robustness of the overall system under an individual failure. By 

doing so, the focus shifts from local failures with a local impact (risk) to local failures with a global 

impact (systemic risk).  

2.3. Network-Based Indices 

Matrix   is used to record the size of each cascade, where entry  (   )  corresponds to the cascade 

size triggered by the failure of firm  , under a given   value,           – see below for a small 

extract of the actual output: 
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Based on this raw set of results, two indices are constructed in order to provide the means of capturing 

the systemic role of each firm. Specifically, the Criticality IDX captures the capacity of firm   to 

impact the entire system by triggering large failure cascades. In other words, it provides a measure of 

how important a firm is, based on its capacity to impact the entire system. The Sensitivity IDX is 

further introduced in order in order to capture the probability of firm   being affected by one such 

cascade. Note that both indices are normalised values by definition and hence, are conveniently bound 

between 0 (min) and 1 (max).  
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A high-level, algorithmic description for computing the Criticality IDX is as follows: 

1. Create   copies of a zero matrix    , where   corresponds to the number of simulations – in 

this case,        

2. For simulation run   and for a given   value, artificially fail firm   and record the size of 

resulting cascade in the    (   ) entry – repeat for all       and for all              

3. Assign a rank to every    (   ) entry, based on the set of values across its respective 

column   e.g. Consider a trivial example where the resulting set of cascade sizes, in the case 

of    , is stored as    (   )  {           }. Subsequently, the resulting rank is given by 

the set {         }  

4. Divide every    (   ) entry with the maximum rank noted under its respective column   – 

this is the normalised rank of every firm  . Continuing the previous trivial example, 

   (   ) is now e ual to {                   }. 

5. Average each entry across all simulation runs i.e. across all   copies of the matrix     

6. Average all normalised ranks across the 2
nd

 dimension of     matrix i.e. across all   values 

Equally, the steps for computing the Sensitivity IDX are as follows: 

1. Create   copies of a zero matrix    , where   corresponds to the number of simulations – in 

this case,        

2. For simulation run   and for a given   value, artificially fail firm   and record the identity of 

firms affected in a temporary matrix – repeat for all       and for all              

3. If firm   is affected, under a given   value, then    (   ) entry switches from 0 to 1 

4. Compute the probability for each firm   to be affected in all   runs. 

5. Average this probability across 2
nd

 dimension of     matrix i.e. across all   values.  

3. Results 

3.1. Cascade Sizes 

The cascade process was simulated across an ensemble of 1,000 networks – results were subsequently 

averaged and captured in matrix   - Figure 3a and 3b present the results in a color-coded fashion. As 

expected, the size of the cascade induced by the failure of each firm   follows a monotonic increase 

as   . Interestingly, a relatively large portion of firms induces no cascades (colour coded as blue), 

though this portion is substantially reduced as the impact of interconnectivity increases. Specifically, 

and at the point where    , a total of 35 firms have no capacity in triggering any failure cascades; 

this number drops to 10 as the impact of interconnectivity reaches its maximum (i.e.      ). 

Hence, the capacity of a firm to impact the entire system is not only conditional to the underlying 

network structure and its own individual attributes but also on the degree upon which its function may 

be affected by the operation of its neighbouring firms.  

In other words, non-critical firms (i.e. incapable of triggering failure cascades) may switch to critical 

if the nature of the interaction between other firms becomes stronger. In fact, it appears that the 

impact of interconnectivity (i.e.  ) has an abrupt effect ον the number of nodes capable of inducing 

cascades of a given size. In the case of small failure cascades (Figure 3c, grey and green markers), a 

continuous and incremental increase in the number of nodes is noted, until a saturation point is 

reached. Interestingly, and in the case of larger failure cascade sizes (Figure 3c, blue and purple 

markers) a bursty behaviour is noted, where increasing the value of α has no effect until a certain 

point is reached. Beyond this point, the number of firms that can induce large failure cascades jumps, 

suggesting that the number of critical firms abruptly change as the coupling between firms 

increases (i.e.   ). 
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Figure 3: a) Cascade size (colour) induced by the failure of firm   (y-axis) across the entire range of the control 

parameter             (x-axis); b) same as a) though firms are now sorted in an ascending manner, based on 

the cascade size that their failure can induce under each   value; c) number of firms (y-axis) capable of inducing 

a failure cascade greater than a given size (marker) under a given   value (x-axis). 

As captured in  , the model output is a function of two distinct variables – firm identity and control 

parameter  . For simplicity, the dimensionality of these results can be reduced by aggregating either 

one. Firm identity information may be omitted by simply considering the maximum and mean cascade 

obtained under every   value – see Figure 4a. Equally, by averaging the results across the entire range 

of the   parameter (
 

   
∑  (   )   

   ), one can deduce the average impact of firm   failing, omitting 

the need to present results for each distinct   value. Such information can be subsequently used to 

compute the probability of encountering a cascade of any given size – see Figure 4b. 

 
Figure 4: a) Maximum (circle) and mean (triangle) cascade size (y-axis) noted under each   value,          . 

Error bars indicate 1 standard deviation across the ensemble of 1,000 networks; b) Cumulative probability 

distribution of cascade size, averaged across all α. Results are for the cascade model (circle) and for a null 

model (square). 1 and 3 standard deviations are also shown for the latter. 

With respect to Figure 4a, and as expected, the same monotonic increase is noted for both maximum 

and mean cascade size, though both exhibit a degree of variation as the structure of each network 

within the network ensemble is bound to be subtly different. Specifically, and with respect to the 

maximum cascade size, this variation (quantified by the standard deviation) remains relatively 

constant, ranging from a minimum of 1.76 to a maximum of 2.61. In other words, the uncertainty of 
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knowing the maximum cascade size is relatively low and fairly independent of  . On the other hand, 

and when considering the mean cascade size (Figure 4b), the degree of variation significantly changes 

with  , ranging from a minimum of 0.44 to a maximum of 6.77. In other words, the uncertainty of 

knowing the size of the mean cascade increases with the impact of interconnectivity.  

With respect to the cumulative probability distribution, two set of results are shown – one from the 

cascade model, and one from a null model. The latter essentially modifies the results of the former in 

order to satisfy the condition of being normally distributed. Focusing on the results produced by the 

cascade model, a straight line is observed for a given set of   values, followed by a sharp cut-off. 

Interestingly, this cut-off converges to the distribution produced by the null model, highlighting its 

exponential character
j
. The combination of a straight line in a log-log plot, followed by an exponential 

cut-off suggests the existence of a truncated power-law distribution, where  ( )      applies for a 

given set of   values. Similar distributions have been noted in several real-world systems and are 

thought to arise due to the finite size of the system
k
. The character of any power law distribution can 

be described by a single parameter,  , referred to as the exponent (under a log-log plot, this 

corresponds to the gradient, though in the case of a cumulative plot, a translation is required [19, 20]). 

Following a methodology proposed by Clauset, et al. [19], and by excluding the exponential tail 

(reducing the sample size to 76, from the original 90)   is estimated to be 1.66.  

3.2. Firm-based information as Cascade Size Proxy  

To justify the need for network-based information during a decision making process, the ability of 

traditional, firm-based information is serving as proxies for effects that arise through this 

interconnectivity (such as failure cascades) will be assessed. Specifically, the capacity of     and     

to approximate the systemic impact of firm   failing will be evaluated.  

The resulting cascade size of 72 randomly chosen firms was used to construct a simple, 2
nd

 order 

linear regression model. In the spirit of cross validation,      of the remaining 18 firms was used as 

an input to the model in order to compute the theoretical cascades – this process was repeated for 

every   value and the goodness of fit measured. The predictive power of the model was then assessed 

by evaluating the absolute percentage error between actual and theoretical cascade size. Equally, the 

process was repeated by using     as the predictor value – see Figure 5. 

Interestingly, the goodness of fit, as measured by the     value, gradually decreases as the impact of 

interconnectivity (i.e.  ) increases – this trend is encountered under both    (Figure 5a) and    

(Figure 5c). Trivially,    appears to serve as a better predictor compared to   , though both      are 

rather low. With respect to the absolute percentage error, both    and    perform poorly – see Figure 

5b and 5d respectively. Interestingly, large values are more frequently encountered at high α values, 

strengthening the argument that as the impact of interconnectivity increases, the ability of firm-based 

information to adequately serve as a proxy diminishes 

                                                           
j
 Results from the null model are drawn from a normal probability density function and thus, are of an 

exponential nature.  
k
 A power law distribution with an exponent ( ) greater than 1 implies an infinite variance of values (and 

depending on the value of  , infinite mean), requiring a system of an infinite size. 
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Figure 5: a) and c) map the goodness of fit (    value) between the regression model and the actual cascades, 

where      and      were used as the predictor values respectively. Note the decrease in     as the impact of 

interconnectivity increases; c) and d) present the results of a 5-fold cross validation, capturing the absolute 

percentage error between actual and predicted cascade sizes, under      and      respectively.  

It is worth noting that models of up to the 4
th
 order have been tested, where    showed a significant 

improvement, suggesting a much better fit. However, the resulting absolute percentage error between 

the predicted and actual cascade sizes grew rapidly (in the case of a 4
th
 order model, exceeding 3000% 

- see Supplementary Information), clearly indicating that the predictive power of the model had 

evaporated. This further analysis highlights that the diminished capacity of both      and      to serve 

as proxies to systemic effects are fundamental
l
 rather than being model-dependent.  

4. Discussion 

Increasing interconnectivity between insurance firms poses a new challenge in a) understanding the 

individual role of a firm, with respect to the system that contains it and b) choosing the right 

information for decisions where systemic effects are important. In response, this paper has presented a 

simple analytical model that may be used to explore point a) via the means of numerical simulation. 

Hence, a number of theoretically important questions may be explored – see Section 4.1. In response 

to b), results of the model can be subsequently used to derive network-based information for 

individual firms (Section 2.3.), supplementing traditional, firm-based information. By doing so, the 

former may be used to both assess and drive the decision making process, when systemic effects are 

to be taken into account – see Section 4.2. 

                                                           
l
Further explorative analysis indicates that one may translate firm-level information to network-based 

information in a rather straightforward, yet coarse, way. Specifically, AA may be used to approximate the 

corresponding Criticality and Sensitivity IDX for firm i. Interestingly, EC fails to provide a similar translation as 

its correlation with both Criticality and Sensitivity IDX is weak – see Appendix 
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4.1. Theoretical Implications: A Brief Exposition 

Evidence of a power law distribution of cascade sizes (Figure 4b) are of great importance, as they 

draw parallels with self-organising criticality – a theory that describes critical phenomena that 

underpin various systems, ranging from earthquakes to financial crisis [39, 40]. Furthermore, as the 

exponent of the distribution is lower than 2, it implies that both its variance and mean value are 

(theoretically) infinite, negating the very notion of an averaged-size failure. In other words, the size of 

a possible failure cascade is only limited by the size of the system rather than its reduced probability 

of occurrence – the latter would have been the case if the cascade distribution was normally 

distributed (e.g. Figure 4b, null model). This observation has three main consequences: a) both small 

and large failure cascades follow the same dynamics; b) large failure cascades may occur without any 

large exogenous force, and c) the expected impact of a local failure cannot be estimated a priory.  

One would naturally expect that large failure cascades are the inevitable conclusion of an unfortunate 

set of conditions aligning. Though this may indeed be the case, it is of no surprise that such 

extraordinary conditions would greatly impact the system. Perhaps more surprising is the emergence 

of such failures that do not require these conditions, as they may arise via the exact same cause as 

local failures i.e. the failure of a single node.  Assuming that resource spent in risk mitigation is 

proportional to the envisioned impact of the risk materialising, the combination of the aforementioned 

points (a), (b) and (c) challenge the very notion of the risk management process. Specifically, as one 

may not reasonably assess whether a local failure is bound to trigger a cascade or not, assigning a 

suitable amount of resource for mitigating against its impact is bound to be a challenging task.  

These observations need to be taken with a word of caution as a number of limitations around the data 

sample exist such as the nature of the network structure itself along with the impact of finite size bias. 

Nonetheless, the evidence of a power law distribution in actual loss events (Figure 1) are in agreement 

with the aforementioned implications and hence, form a solid argument on the utility of this mode, at 

least on a qualitative basis. 

4.2. Practical Implications: An Example 

The practical utility of the cascade models, along with the performance of network-based measures 

will be illustrated via the use of a decision making example. Specifically, the impact of firm 

acquisition on the entire system will be assessed. Choosing which firms are allowed to be merged is 

based on either firm-based (    or    ) or network-based (Cascade IDX or Sensitivity IDX) 

information. Once a merger is completed, the system is stressed using the cascade model and the 

impact of the largest failure cascade is subsequently recorded.  

The method for doing so is as follows. First, firms are ranked in an ascending manner, based on a 

given set of information –    ,    , Criticality or Sensitivity IDX. The top-two or bottom-two 

ranking firms (firm   and  ) are subsequently merged, forming a new firm  . This new firm preserves 

the exposure of the original two firms (i.e. its connections, hence         ). Similarly, its 

economic status is defined as              and            . At this point, the robustness 

of the resulting system is evaluated by running the cascade model, evaluating the impact of the largest 

failure cascade possible within the given state of the system. Note that the size of the system has now 

been reduced by 1. Once the impact is recorded, the respective set of information is updated to reflect 

the new state of the system and the process is subsequently repeated, until the limit of merger 

iterations is reached (i.e.    ). Results for merging the top ranking and bottom ranking firms are 

shown in Figure 6a and 6b respectively.  
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Figure 6: Robustness of the system as firms are iteratively merged, measured as the percentage of firms affected 

by the maximum failure cascade noted under failing each firm      ; in a) the top two ranking firms are 

merged; in b) the two lowest-ranking firms are merged; note the logarithmic nature of the y-axis. Information 

used to enable this ranking is based on their Criticality IDX (triangle), Sensitivity IDX (diamond),     (circle) 

or     (square).  Note that results are averaged across  . 

This approach provides insights on both the utility of firm acquisition as a way of varying the 

robustness of the overall system, as well as identifying which information can provide for the most 

efficient way in taking such decisions. Note that as this section aims to provide an example of how the 

cascade model, as proposed within this paper, can be of practical use – an in-depth analysis of the 

results will be presented in future work.  

4.2.1. Systemic impact of firm acquisition 

Let us focus on the case where top-ranking firms are allowed to merge (Figure 6a). Clearly, there is a 

decrease in the robustness of the system (seen as an increase in the percentage of system affected) as 

firms becomes larger, and hence, their individual failure resonates deeper within the system. 

Importantly, the monotonic nature of this reduction is irrespective of the set of information used to 

rank firms. This insight has important implications as the merger of individually healthy firms (i.e. 

high    ) still has a negative impact to the robustness of the overall system.  

In the case of merging bottom ranking firms (Figure 6b), an improvement in the robustness of the 

system (seen as a decrease in the percentage of the system affected) can be achieved, the extent of 

which depends on the set of information used to rank the firms. Alas, this gradual improvement is 

negated as the number of merger iterations increase, highlighting the fact that as soon as firms reach a 

critical value (which depends on the set of information used to rank them) a loss in the systems’ 

robustness is inevitable. Interestingly, this trend is not reflected when the Sensitivity IDX is used – 

see Section 4.2.2. 

4.2.2. Efficiency in decision making 

In this context, efficiency in the decision making process may be measured by the rate in which a 

change in the system’s robustness is achieved. In other words, the steeper the change noted, the more 

efficient the decision of merging the two given firms is.  

With respect to Figure 6a, the use of the Sensitivity IDX results to increased efficiency as the system 

is quickly brought to a point where the occurrence of the largest impact will affect the entire system. 
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In other words, the use of Sensitivity IDX as the means to identify mergers that need to be avoided 

significantly outperforms any other set of information as it can bring the system to a critical state with 

the fewer number of mergers. Interestingly, merging the firms that are most capable in triggering large 

cascades (i.e. ranking high in the Criticality IDX) underperforms when compared to   , though still 

outperforms   . This behaviour suggests that a firm’s sensitivity (in terms of being affected by the 

actions of other firms) is more important than its individual capacity in triggering failure cascades. 

Such insight can be used to focus mitigation strategies in reducing individual firm exposure (e.g. by 

restricting the number of connections individual firms may have) rather than controlling individual 

firms’ characteristics that drive the cascading process itself (such as    and   ). 

With respect to Figure 6b, and by using the Sensitivity IDX, the state of system exhibits the greatest 

improvement. In fact, its use was capable in bringing the system at a stable state, where no cascade 

was sustained. In other words, merging firms that ranked low in sensitivity gradually led to an 

increasingly robust system, outperforming the remaining set of information. On the other hand, by 

using the Criticality IDX, the system exhibits a rather stable state, where the impact of the largest 

cascade consistently lingers at the highest level. In fact, its use outperforms the remaining set of 

information in terms of achieving the lowest level of robustness at any given number of merger 

iterations. In other words, by merging firms that rank low in terms of their capacity to trigger large 

cascades, a transient stage of improved robustness is achieved. This state is conserved until new firms 

with an increased capacity to trigger large cascades emerges. At this point, each new merger leads to 

a further decrease in the robustness of the system. 

4.2.3. Concluding Remarks 

This section has briefly illustrated how the cascade model may be used to support decision making 

process when effects at a global level are to be expected. Specifically, it has been shown that firm 

acquisition between high-ranking firms increases the exposure of the entire system to systemic risk. 

Interestingly, when low-ranking firms are considered the converse is true, within a limited regime, 

before the same damaging behaviour is reached. Evidence of this sort suggest that attempts to save 

individual firms via firm mergers (e.g. the acquisition of Meryl Lynch by Bank of America, saving the 

latter from an eminent collapse) may be unsubstantiated at best (and dangerous at worst), as the 

exposure of the system to systemic risk greatly increases. Equally, a merger may become more viable 

by changing the role of the individual firms within the network e.g. increase the degree of similarity 

across various investments between the involved parties, decreasing the number of connections. 

Finally, it was also shown that examples of network-based information can significantly outperform 

firm-based information, leading to increased efficiency in the decision making process. 

5. Conclusion 

Empirical evidence within the insurance industry suggests that loss events can affect a surprisingly 

large number of firms (Figure 1), indicating that interconnectivity within the industry is a central 

aspect. From a complex network perspective, these events may be interpreted as failure cascades, a 

direct result of a cascading process. As such, a simple network model capable of replicating this 

qualitative behaviour was constructed, and later tested on an empirical dataset. By doing so, the 

capacity of each firm in triggering a failure cascade (Figure 3), along with the probability of being 

affected by one (Figure 4b), was assessed. Traditional, firm-based information was subsequently 

shown to be a poor predictor of the systemic impact of each firm. In response, two network-based 

indices were constructed, enabling the ranking of firms based on their systemic role. Finally, the 

utility of the cascade model and the resulting indices was illustrated through a decision making 

example. Specifically, the model was used to assess the systemic impact of a firm acquisition process, 
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while the network-based information was shown to significantly outperform traditional firm-based 

information in terms of their efficiency in driving the decision making process (Figure 6). 

Though the aim of this work is to introduce a novel way in assessing systemic risk in the insurance 

industry, along with raising a number of questions around the means of mitigation actions and 

regulatory frameworks, numerous challenges remain yet untackled. For one, both individual firms and 

regulators are left with the considerable task of capturing meaningful interactions between firms. By 

doing so, one may begin to explore the impact of various network structural features on the robustness 

of the system. Although some work around these aspects already exists (e.g. [18, 28]), it is yet 

immature as numerous idealisations need to be lifted before their output can be put into practical use. 

Increasing data quality by directly observing the network of relationships is expected to increase the 

practical relevance of similar approaches – notable examples of include [41-43]. Finally, the insurance 

community is faced with the challenge of keeping up with the ever increasing pace in which the field 

of complex networks is being developed.  

In an era of increased interconnectivity, non-linearity becomes the rule rather than the exception, 

fostering local events with a global impact. Academia has risen to the challenge by developing novel 

frameworks that can account for these effects, complex networks being one of the most successful. It 

is now up to the industry to harvest this insight and engineer the conditions for a robust financial 

system. 
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Supplementary Information 

This section presents the results of examine the capacity of      in serving as a proxy for the cascade 

size cause by the failure of firm  . In contrast to the 2
nd

 order model used in the main text (Figure 5a), 

a 4
th
 order model is used to examine whether this failure was due to the model being simplistic (i.e. 

smaller number of parameters).  

With respect to Figure 1SI, the same trend of a diminishing R
2
 value as the impact of 

interconnectivity increase is noted, yet the decrease is much more subtle. Such evidence would 

suggest that indeed, failure to correlate, as described in Section 3.2., was due to under-fitting the 

model. However, by examining the absolute percentage error of the model, it is clear that the 

predictive power of the model has completely deteriorates, with values in the range of thousands. 

Hence, one can attribute the increase R
2
 value as being the result of over-fitting, validating the fact 

that     is a poor predictor in evaluating the impact of firm   failing. Similar behaviours was also 

noted when     was considered as the predictive value. 

 
Figure 1SI: As Figure 5a and 5d, where a 4

th
 order, linear regression model is used, compared to the previous 2

nd
 

order model. a) Similar to the 2
nd

 order model, a decrease in the R
2
 value is noted as the impact of 

interconnectivity increases (a), though its impact is substantially less; b) the absolute percentage error 
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Appendix 

By exploring the nature of the relationship between network-based (such as the Criticality and 

Sensitivity IDX) and firm-based proxies (such as AA and EC) one can evaluate the extent upon which 

the latter capture effects that arise from firm interconnectivity. Figure 1A drives this comparison 

forward by presenting a set of scatter plots between the two set of information.  

 

Figure 1A: a) and b) explore the relationship between AA and the two network-based proxies, Criticality and 

Sensitivity IDX respectively. Similarly, c) and d) map the relationship between EC and the network-based 

proxies.  

One could reasonably postulate that EC would correlate in a negative manner with the Sensitivity 

IDX, simply because a greater excess suggests an increased capacity in absorbing the impact of other 

firms failing. In fact, Figure 1A(d), indicates that this relationship is not as trivial as one would 

expect. Specifically, a subset of firms indeed appears to follow this pattern, where the Sensitivity IDX 

drops quickly as EC increases. However, a 2
nd

 subset of firms exhibit no correlation between 

Sensitivity IDX and EC, with the former remaining constant as the latter increases. Finally, a 3
rd

 

subset appear to be scatter between these two behaviours. Shifting the focus on the relationship 

between EC and Criticality IDX, there appears to be some sort of weak and positive correlation, 

where the latter increases with the former. Nonetheless, this relationship is too noisy to attach any 

significant confidence to the observed behaviour. 

In stark comparison to EC, AA exhibits clear relationships between both Criticality and Sensitivity 

IDX. Yet again, both relationships illustrate non-trivial features such as non-monotonicity and 

threshold behaviour. Non-monotonicity is evident in a small range between the relationship of 

Criticality IDX and AA. Within that region, an increase in AA leads to a decrease in the obtained 

Criticality IDX, a contrasting trend to the overall positive correlation between the two. Focusing on 

the relationship between the Sensitivity IDX and AA, the former appears to increase with the former, 

until a threshold value of      is reached. Beyond this point, the Sensitivity IDX becomes negatively 

correlated, rapidly decreasing in value as AA continues to increase. 
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