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Abstract — Our desire to deliver increased functionality while 

setting tighter operational and regulative boundaries has fueled a 

recent influx of highly-coupled systems. Alas, our current 

capacity to successfully deliver them is, evidently, still in its 

infancy [1-5]. Understanding how such systems are structured, 

along with how they compare with their natural counterparts, 

can play an important role in bettering our capacity to do so. The 

following article will be grounded upon the principles of network 

science in order to contrast such naturally evolved systems with 

systems that we purposefully engineer. Assuming that the 

underlying structural variety of such systems fuels design 

uncertainty, and by adopting an evidence-based methodology, 

systems of the latter class will be compared in terms of their 

adherence to statistical normality.   

Keywords— risk; project management failures; complex 

systems; network science; statistical analysis 

I.  INTRODUCTION  

The pinnacle of human ingenuity lies in our ability to 

uncover natural phenomena, understand their underlying 

drivers and harvest them by engineering purposeful systems 

[6].We have championed problems found both within the 

domain of simplicity (through the paradigm of reductionism in 

the 19th century) and disorganized complexity (through 

statistical mechanics in the 20th century) [7].  Alas, our 

modern society is becoming increasingly reliant upon the 

delivery of projects characterized by emergent functionality, 

non-linearity and feedback between tightly coupled, yet 

fuzzily defined systems. Increased demand, limited resources 

and tighter schedules push as in transcending the uncharted 

territory of organized complexity [7] where our capability to 

understand, and consequently control, is continuously 

challenged. 

Such challenges are commonly faced in numerous 

engineering domains – examples include software 

development, printed circuit board (PCB) design and 

construction project management. In an attempt to tackle 

them, they are routinely divided into a set of sub-problems, 

each with interfaces and dependencies to the rest. This 

division represents the human perception to a problem [8]; 

however, such linear depiction contradicts the inherent 

complexity of the systems that we desire. As a result, 

unintended consequences, driven by unwanted emergent 

properties (e.g. interfacing bugs in software; chaotic 

oscillation in PCBs and cascading failures in construction 

projects), are becoming increasingly common [1-5].  

Emergence of this sort can frequently lead to significant losses 

in terms of man-hours, resources and often, human life.  

In an attempt to explore such real-life consequences, we 

will limit ourselves within the analytical framework of 

complex networks, and by adopting an evidence-based 

approach, we will employ statistical tools in order to compare 

and contrast different (sub) classes of complex systems. The 

derived insight is expected to revolve around two fundamental 

questions: 

 How general, and subsequently, transferable are 
observations and techniques applied within different 
classes of complex system?   

 Is it possible that the topology and structure of some 
engineered systems result in an inherently more 
challenging effort to tame them? 

The main objective of this paper is to first, evaluate 
whether naturally evolved systems have any significant 
differences between engineered systems, in terms of their 
structure. Subsequently, we will shift our focus to the latter 
class of systems, where we will present a holistic methodology 
in order to map the degree upon which their underlying 
structure adheres to statistical normality. 

The importance of such insight revolves around the 
confident use of a mean value (a direct result of the 
applicability of a Gaussian distribution) in terms of the 
statistical dependence, variability and occurrence of the 
structural blocks of such systems. Such assumptions are 
commonly encountered in the traditional design of a number 
of systems, ranging from Mobile Wireless Networks [9] to 
crucial aspects of the entire economy [10].  

In the spirit of empirical falsification [11], two formal 

hypotheses will be presented and consequently, evaluated: 

 Hypothesis 1: Relevant universal characteristics, as 
observed in natural systems, are equally applicable to 
engineered systems.  

 Hypothesis 2: Regardless of their context, all three 
engineering sub-classes adhere to a meaningful 
measure of statistical normality in terms of their 
underlying structure 

The article will be structured as follows; first, a brief 
introduction to network science, along with relevant findings, 



will be presented in order to provide the methodological 
background of the paper. The empirical data sets used will 
then be introduced, along with a new contribution in terms of 
network datasets – namely in the form of construction 
projects. The methodology used to evaluate Hypothesis 1 and 
2 will be subsequently presented, along with a review of the 
results. Discussion and concluding remarks will then follow.   

II. COMPLEX NETWORKS 

Network science is part of the recent burst of 
methodologies promoted by the complexity science movement, 
aimed in understanding complex systems [12] through 
mathematical abstraction in the form of graphs, where 
components, referred to as nodes, interact with each other via 
links [13]. Aided by an unprecedented availability of data and 
computational power, complex networks have proved to be a 
unifying paradigm between diverse domains of research [14] 
where important (and often, universal) structural characteristics 
have been identified [15], some of which are briefly reviewed 
below.  

Namely, it has been commonly assumed that 
interconnections found within a given system did not 
significantly deviate from a random distribution [16]. Thus, as 
they were a residual attribute to intrinsic randomness, 
connections did not play a significant role in the function of the 
system. Consequently, their composing topology was assumed 
to be either completely regular or random.  Reference [17] 
showed that in fact, real world systems tend to lie between 
these two extremities, having a tendency to be highly clustered 
(a property of regular systems such as lattices) and yet 
exhibiting relatively small average path lengths, a characteristic 
of random graphs. Importantly, the extent of this so-called 
“small-world” (SW) effect has been consequently shown to be 
linked with the capacity to efficiently control such system [18]. 
Through empirical data, further research highlighted a 
significant deviation from the assumed random distribution to a 
power-law distribution of connections [19] further reinforcing 
the need to focus on the interconnectivity between components 
– the basic underlying principle of holism. Through a shift of 
focus on the level of aggregation, further research proposed 
that statistically significant patterns of interconnections (i.e. 3 
node sub-graphs, referred to as network motifs) form the basic 
structural building blocks of complex systems [20]. However, 
as the link between sub-graph structure and functions is still 
largely debated [21], a distinction between structural and 
functional subgraphs will be utilized within this paper, where 
the former will not imply the latter [22]. All three shared 
organizing principles have been the founding stone of “the new 
science of networks” [23] and will thus serve as the de facto 
starting point of this article.  

The interested reader is encouraged to delve into the 
excellent reviewing works of [14, 24-27]. 

III. METHOD 

Two fundamentally different classes of systems, referred to 
as evolved and engineered, will be contrasted and explored, 
with an emphasis on the latter. Evolved systems will be defined 
as a class of systems of which their internal structure is a result 

of a decentralized, co-evolutionary process. Engineered 
systems will be defined as the result of a centralized, controlled 
and nested architectural design process – they will be 
subsequently sub-divided in terms of their context, namely, 
Software, PCBs and Construction Projects. Previously 
published empirical datasets for the majority of systems will be 
used and expanded upon – see following sub-section.  

 

 
 

 

A. Data  

The entirety of evolved networks and the sub-class of 
software networks have been attained from literature – see 
Table 1 for relevant references. Although a limited number of 
PCB networks were already readily available from Reference 
[20], further samples were obtained by mapping the 
relationships between logical gates and inverters for a variety 
of benchmark circuit, first presented (and consequently, made 
available) though two international symposia – specifically 
ISCAS89[37] and ISCAS99 [38]. 

A notable contribution of this paper is in the form of 
presenting Construction Projects (abstracted using their 
compromising task networks, explicitly expressed in their 
relevant Gantt Charts – for an ex. see Fig.1) as a subclass of 
engineered networks. Note that in some cases, task networks 
were updated to reflect the on-going progress of the actual 

Fig.1. A construction project, mapped as a network via its compromising task 
dependencies. Bottom left plot illustrates the power law distribution of both in 

and out degree. Bottom right plot illustrates the deviation from the mean degree 

- notice the existence of four nodes with a deviation greater than 6  (the 
probability for a node having such great deviation in terms of its out degree is in 

the order of 5.4 x 10-10). 



project – such data are parenthesized within Table 1 and they 
have played an equal role in the analysis. Furthermore it is 
worth noting that in order to limit potential inconsistencies that 
may arise from endogenous, sociotechnical factors (e.g. 
organizational culture, internal code of practice etc.) and 
exogenous (e.g. geopolitical and cultural peculiarities etc.), the 
Gantt Charts have been obtained from a single source (a 
regional construction company) in an attempt to minimize the 
variables that may induce potential inconsistencies.  

Special attention was paid in the data harvesting process 
across both classes in order to ensure that links represent 
comparable interactions (in this case, functional dependencies). 

TABLE 1: DATASETS  USED THROUGHOUT  THIS PAPER 

Class Node count Edge count 

Engineered - Construction Projects 

S171; (2); (3) 937; (1032); (1093) 1080; (1174); (1200) 

S116; (2); (3); (4) 875; (879); (840); (837) 865; (867); (809); (807) 

S138; (2); (3); (4) 106; (109); (108); (147) 105; (114); (113); (167) 

S107; (2) 520; (522) 561; (564) 

S95 184 216 

S127 175 194 

S132 317 400 

S125 730 792 

Engineered - Software 

xmms [28] 1032 1096 

Digital Material [28] 187 271 

MySQL [28] 1501 4212 

VTK [28] 788 1375 

Abiworld [28] 1096 1830 

Linux [28] 5420 11449 

Java source code [32] 724 1025 

Tulip [34] 111 160 

Engineered - PCB 

s208 [20] 122 189 

s420 [20] 252 399 

s838 [20] 512 819 

b11 764 1409 

b12 1070 2088 

b13 353 611 

s1196 561 1027 

s1423 749 1238 

s1488 667 1387 

s9234 5844 8182 

s1494 661 1399 

s953 440 772 

s5378 2993 4391 

s713 447 610 

Natural 

Email [29] 1133 10903 

SW Citations [30] 396 994 

Political Blog [31] 1490 19025 

Karate Club [33] 63 312 

PPI Yeast [35] 1870 4480 

Food Web [36] 249 2065 

C.Elegans [17] 297 2345 

 

 

 

 

 

 

B. Methodology 

Mathematically speaking, a network can be mapped as a 

graph G= {{N} {E}} formed by the set N of nodes i  N and 

the set E of links (i, j)  E, indicating a link from node i to 

node j (but not necessarily the other way around). An 

adjacency matrix, A, is an aggregated representation of the 

graph’s structure, in which Aij=1 if there is a link between node 

i and j and 0 otherwise. As the entirety of the datasets is 

abstracted as directed networks (i.e. links have directionality), 

Aij is not necessarily equal to Aji, implying the presence of 

asymmetric adjacency matrices.  

1) First Hypothesis  
In order to evaluate Hypothesis 1, we will first briefly 

ground our analysis on a coarse level of aggregation. We will 
utilize a commonly used, statistical measure of a graph, 
referred to as the graph’s diameter (D), and defined as the 
longest path between a pair of nodes, of which any loops or 
reuse of a link is forbidden – mathematically defined in 

equation (1) where eccentricity, , is the greatest shortest path 
between node i and any other node. 

                                                           

 Similarly, the average path length can be defined as the 
mean shortest path from node i to j, averaged over all nodes j 
within the graph – mathematically defined in equation (2) 
where n is the number of nodes (i.e. the cardinality of set N) 
and d is the shortest path between i and j.   
                             

 

 The relationship between these two metrics can be used to 
quantify the extent of the “SW” effect – see Figure 3. 
However, we will need to delve into finer levels of aggregation 
if we are to embrace and understand the greater extend of 
structural variety within such systems. To be more precise, we 
will focus on subgraphs (i.e. a meso level of aggregation) and 
specifically utilize 3-node subgraphs, as they are often referred 
to as the structural blocks of complex networks [20, 22, 39]. 
The freely-available software MAVISTO [40] was employed 
in order to decompose each system in terms of the 13 possible 
combinations of 3-node sub-graphs (see Fig.4, inset) and report 
counts of each one. As subgraph occurrence scales with 
network size [41], obtained values were then normalized over 
the total number of subgraphs present, effectively computing 
values that we will refer to as subgraph concentration values – 
see Fig.2 for results. It is worth noting that the algorithm used 
allows for the potential reuse of both nodes and links in order 
to identify a subgraph. This is an important aspect if we are to 
obtain representative decomposition of each network. By 
applying a limitation on the potential of reusing either a node 
or link, significant topological features such as the numerous 
leaf nodes found in the Construction Projects’ networks (as 
evident in Fig. 1) would not be accounted for. 



 

 

2) Second Hypothesis 
Due to the singificant stuctural deviations that are evidently 

present between the two classes (see Fig. 2), we will remain at 
the meso-level of detail and further explore how statistical 
normality around the distribution of the considered variables 
(i.e. the four highest subgraph concentrations) within each 
subclass of the engineered systems varies. QQ plots are used in 
order to inspect the dispersion between actual and expected 
concentrations - the latter were derived from a theoretical 
Gaussian distribution, computed based on the samples within 
each subclass.  Linear regression (and their R2 values) will also 
be used in order to quantify variation between all possible (i.e. 
6) combinations between the aforementioned subgraph 
concentrations. Finally, Spearman Correlation coefficients will 
report any statistical dependence between such pairs – note that 
this coefficient is non-parametric and thus, imposes no 
assumptions in terms of their underlying distribution.  

 Effectively, the proposed methodology for testing 
Hypothesis 2 is grounded on the assumption that the less 
meaningful an average value is (based on deviation from a 
Gaussian distribution) the less ordered an engineered system is. 
Dispersion focuses around the ability to predict the subgraph 
concentration within each system while both R2 and Spearman 
values focus on the confidence of one to say that an observed 
increase in one structural variable will influence another, 
assuming that all other variables remain unchanged. Figure 4 
summarizes the results. 

IV. RESULTS 

A. Macroscopic Network Analysis 

The more pronounced the “SW” effect [16] is within a 
network, the fewer controllers one may need in order to exert 
an overall influence upon the entire network [17], thus it is 
worth exploring its extent within each system. With respect to 
Fig. 3, left plot, it is important to note that the entirely of 
systems appears to follow a well-defined linear trend, 
regardless of the systems’ purpose, function, scope or age. One 
could thus infer that, at this level of aggregation, both classes 
share a common organizing principle. Notably, the majority of 
the engineered class appears to dominate the higher region of 
the plot – PCBs and Construction Projects tend to occupy the 
higher end whilst Software and Evolved networks are restricted 
to the lower end. This is mainly due to the acyclic, tree-like 
structure of the former and implies significant effort to reach 
(and consequently, manipulate) distant nodes efficiently. By 
introducing size (in terms of node count) as a variable (see Fig. 
3, middle plot) first note that the coherency between the 
networks now appears to break. Furthermore, we similarly 
observe that both PCBs and Construction Projects process a 
much steeper gradient when compared to the rest of the 
networks, illustrating a greater sensitivity in terms of 
scalability. It is worth noting that the mean degree for the 
engineered class appears to be almost scale invariant (Fig. 3, 
right plot) – this is clearly not the case for the majority of the 
natural networks.  

 

 

Fig.2. Mean percentile decomposition, in terms of 3-node subgraph 
concentrations, for both evolved and engineered (the latter is broken down 

further into the three main three sub-classes). Notice the significantly less 

variation found within the structure of the latter three. 

Fig.3. Overall reachability capacity of the network (quantified by the average path length) as function of a network’s diameter and number of nodes 



Importantly, as engineering systems scale up, the need to 
exert control must not be limited at a local level as the average 
local capacity to influence the overall network is reduced as 
systems scale up. This is due to the fact that as the mean degree 
remains scale invariant, the average path length does not. 
Within a pragmatic context, such evidence appears to highlight 
the need to transition from the micro-management of 
components to a more holistic approach in order to keep up 
with modern, mega engineering systems. Examples of such 
counterintuitive insight may include the failure to effectively 
and efficiently control the destiny of a Construction Project (in 
terms of timely delivery) by merely micromanaging and 
optimizing aspects of its constituent, day-to-day tasks.   

B. Meso-Scale Network Analysis 

Although initial evidence at the macro level may suggest 

some structural commonalities between the two main classes 

(Fig. 3, left plot), qualitatively different behavior (Fig. 3, 

middle and right plot) was also noted. By focusing on the 

subgraph concentration of the two main classes (as seen in Fig. 

2) it is obvious by mere inspection that the Engineering class is 

significantly less varied when compared to the Evolved class. 

Consequently, Hypothesis 1 can now be considered to be 

falsified as evidence at both macro and meso level indicates 

significant differences between the two classes. Note that 

Software and Construction Project networks are mainly acyclic 

(i.e. they do not contain and loops) and thus have access to a 

limited palette of available subgraphs (namely m1, m2, m3 and 

m7). On the other hand, PCBs are cyclic and thus have access 

to all 13 possible combinations. Thus, it is rather remarkable 

that both Construction Projects and PCBs exhibit relatively 

similar concentration profiles (in terms of m1, m2 and m3) - 

see Fig. 2. Nevertheless, the former do illustrate cyclic 

dependencies (m8), a feature which is not available to the 

latter. On the other hand, although Software networks draw 

from the same potential subgraph pool (both are acyclic) they 

have pronounced differences in the concentration of m1, m2 

and m3. 

We will now focus on evaluating the second Hypothesis by 

introducing our suggested methodology, results of which are 

summarized in Fig. 4. More specifically, we will focus in 

linking structural variations (in terms of subgraph 

concentration) within the Engineered class, and thus, rank its 

three subclasses systems in terms of their predictability, both in 

terms of subgraph occurrence but also in terms of mapping 

dependencies between pair of subgraphs.  

With reference to Fig. 4, the upper triangular of each matrix 

plot presents the computed Spearman Correlation coefficients. 

All three subclasses exhibit a statistically important (i.e. at a 

0.01 level) correlation between m1 and m2 and thus, this 

relationship appears to be of special importance – the authors 

are currently involved in further exploring the importance of 

this relationship. Construction Projects further exhibit a 

significant correlation between m3 and m7 while PCBs 

similarly exhibit a strong correlation between the pair m2/m3. 

Thus, in this sense, both Construction Projects and PCBs imply 

a greater predictability in their internal structure - for ex. an 

increase in its m2 concentration will fuel expectations of noting 

a reduction in the m3 concentration within the PCB subclass, 

assuming all other variables remain constant. By inspection, 

one can also note that PCBs have the highest average R2 value 

(each concentration plot can be found on the lower triangular 

of each matrix), though in absolute terms, they are still 

relatively low, implying that non-trivial interactions between 

the subgraph concentrations are at play. Nevertheless, such 

evidence can serve as proxies for practitioners in terms of 

project feasibility. For example, a small scale PCB designer 

would expect a greater success rate when transitioning to larger 

scale projects than a construction project manager or a software 

engineer due to the reduced amount of noise found between the 

interactions of its internal structural blocks.  

We now shift our focus on the QQ plots (Fig. 4, diagonal of 

each matrix plot) where the y-axis represents the expected 

subgraph concentration (based in a theoretical, normally 

distributed sample of equal size) of the four most frequent 

subgraphs per subclass, compared to the observed quantity. 

Within the Construction Projects’ subclass, we observe a 

relative adherence on the y=x symmetry line, implying a 

significant convergence between observed and expected value 

with the notable exception of m2 concentration. Moving on to 

the Software subclass, we observe similar uniformity with the 

notable exception of m1, which tends to produce significant 

deviations. Surprisingly, however, PCBs exhibit the greatest 

deviation between observed and theoretical values throughout 

all four subgraph concentrations – this is rather surprisingly as 

PCBs tend to be more ordered in terms of the expected 

dependencies between subgraph concentrations, as it was noted 

above. Increased dispersion between the two quantities can 

have important implications within a pragmatic context. 

Knowledge generation from past experience; generic tools and 

methodological applicability are all examples that 

fundamentally build on the expectation of what is to be 

encountered will resemble what has already been encountered 

and accounted for. However, evidence from this work suggests 

that this may not always be the case for certain subclasses. 

Consequently, as actual subgraph concentrations tend to 

deviate from expected values, the architecture that they 

represent (and thus, the tools that have been developed to 

account for their features) will not be applicable to the entire 

range of apparently equivalent systems.  

Finally, the results, as summarized in Fig. 4, can also be 

used to confidently falsify Hypothesis 2. 

V. CONLCUSIONS  

This paper has adopted a top-down approach by first 

comparing two general classes of systems at two levels of 

aggregations – namely the macro (through an examination for 

the extent of the “SW” effect [17]) and meso (though the 

utilization of 3-node subgraphs) level, with a special focus on 

the latter. 



Fig.4. Matrix scatter plots for each of the three engineered subclasses. Upper triangular part of each matrix presents the Spearman Correlation value, ranging from -1 
(perfect, negative, statistical dependence) to +1 (perfect, positive, statistical dependence). The lower triangular of each matrix plot presents a linear regression 

between all possible pairs of the four highest subgraph concentrations. The diagonal illustrates QQ plots where the expected subgraph concentration, based upon a 
Gaussian distribution, (y-axis) is plotted against the actual subgraph concentration (x-axis).  The inset illustrates all possible, 3-node subgraphs. 

 

Focusing on the Engineered class, pronounced subgraph 

patterns were identified and used in order to falsify the 

hypothesis that both natural and engineered systems have 

similar structural decomposition, when their form is abstracted 

using networks. As such, it poses an important question of 

whether domain specific knowledge has limited applicability in 

terms of transferability and applicability within different 

contexts, both in terms of general insight but also in terms of 

tool applicability. Furthermore, as topology plays a 

fundamental role on the dynamic processes that take place both 

between and within each node [24], along with how such 

dynamic aspects can eventually feed-back and drive their 

capacity to adapt [42], such distinct differences may be features 

that deserve further investigation if we are to engineer systems 

that mimic desirable aspects of the Evolved class (ex. increased 

robustness to external perturbations).  

While in the process of falsifying the hypothesis that 

engineered systems possess some sort of meaningful statistical 



normality, a greater question appears to emerge. Much of our 

ability to engineer purposeful systems is driven by our capacity 

to observe patters and deduce theories around their workings – 

one of the most successful being the Central Limit Theorem, 

which effectively underlies the importance of any mean value. 

However, evidence presented within this work, but also within 

the complexity science BoK, highlight the limited applicability 

of such assumptions that tend to underlie a number of 

traditional design methodologies. Examples of such insight 

present an opportunity for two distinct communities that focus 

on understanding (complexity science) and delivering such 

complex systems (engineering) to engage in a constructive 

dialogue if we are to better our capacity to efficiently deliver 

such systems.    
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