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1. Introduction 

Design is one of the principal processes within the domain of engineering; bettering the former will 

inevitable improve the latter.  Designing complex systems is one of the most challenging tasks of our 

time. The need to deliver an ever-increasing number of such systems, along with increasingly 

challenging constraints (demands for increased functionality, limited resources, increased number of 

divergent stakeholders etc.) makes this a matter of great importance. As engineers, we need to 

understand the failure modes of such systems in order to increase our confidence in designing systems 

that work more often than not. Recent mega-failures (ranging from the Fukishima nuclear reactor to 

financial fraud examples such as the “London whale” incident) continuously serve as reminders that 

currently, our capacity to deliver complex systems in a sustainable manner is still in its infancy. 

 

Organisations are increasingly reliant upon progressively more elaborate processes in order to operate. 

Such processes are delivered by sociotechnical systems, relying on interactions between social and 

technological (or generally, engineered) systems rather than individual instances of either. Their 

composing elements include social agents at various aggregated levels (i.e. people, teams, agencies, 

etc.), along with IT systems of varying capabilities (i.e. from PCs to servers), united by policies and 

various business processes. Within this context, the UK Ministry of Defence (MoD) has recognised 

that a key challenge lies in the process of “understanding linkages and dependencies between people 

… and equipment” [DSTL 2012]. Such dependencies are far from being random – they are usually 

driven by built-in redundancies and/or required functional dependencies. Their effectiveness will 

inevitably lead to increased capabilities and efficient resource expenditure, resulting in sustainable 

systems and leading organisations towards achieving a competitive advantage.  

 

Reducing operational risk is a necessary condition for doing so. The underlying motivation is 

fundamentally economic – the amount of resource put into designing any such system (i.e. capital cost, 

lifecycle costs, upgradability, etc.) will be proportional to the expected overall effect in terms of 

overall operational capacity. Situational Awareness (SA) is a key concept in maximising this utility 

function. To further elaborate, SA is a state whereby an organisation identifies and understands 

incidents or events, before assessing their likely impact on operations [Endsley 1995]. In the context 

of cyber-security, SA can be understood in terms of achieving a number of objectives, namely: (1) Be 

aware of the current situation; (2) Be aware of the impact of the attack; (3) Be aware of how the 

situations evolve; (4) Be aware of actor behaviour; (5) Be aware of why and how the current situation 

is caused; (6) Be aware of the quality and trustworthiness of the information and intelligence; (7) 

Assess plausible futures of the current situation [Bardord et al 2010].  
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It is important to appreciate that it is rather improbable (and most definitely, uneconomical) to design 

a fail proof system. Thus, in order to explore resilience in the context of sociotechnical systems, a 

suitably abstracted model will be constructed by utilising concepts from network science – the latter 

being a multidisciplinary domain that focuses on the nature of interconnectivity between discrete 

entities rather than their analysis. By concentrating on the first 3 objectives that define SA, artificially 

generated (but suitable tailored) systems will be perturbated under two extreme attack modes (i.e. no 

threshold of containment and thus, no capability to be restrained) in order to identify the effect of local 

failure at a global level along with its progression, specifically looking for early-warning signs. This 

was achieved through a number of numerical simulations, using MATLAB, in order to provide 

quantitative evidence on the fundamental mode of failure. Implications in terms of the design process 

of such a system will then be presented through the derived insight to improve a specific aspect of the 

design process – the trade-off between resilience and capacity to operate efficiently. 

2. Model 

2.1. Improving design by understanding failure 

[Arthur 2009] suggests that engineering design is a fundamental process upon which means (let it be 

an artefact, process or methodology) are devised in order to utilise captured phenomena (uncovered by 

science) in order to perform a purpose. From an economic perspective, we also propose that a good 

design is one that maintains maximum functionality in a sustainable way with minimum cost. In order 

to do so, relevant agents need to be able to understand the potential impact of a local failure on a 

global scale (i.e. the entire system) the functionality of the entire system. Consequently, the purpose of 

this paper is to provide some insight on this aspect by providing quantitative evidence on the reaction 

of different system architectures on a worst-case scenario basis.  Two useful measures will then be 

proposed to serve as proxies for monitoring the state of each system, enabling decision makers to 

educatedly rank local failures in terms of the potential influence on the global system and thus, 

improve mitigation resource allocation. We would like to emphasise the fact that improved design, 

within the domain of engineering, has traditionally taken place by better understanding failure 

mechanisms and designing accordingly (e.g. the design procedure of any structural elements begins by 

first understanding the failure profile of its composing material under loading, e.g. will it fail in a 

ductile or a brittle way? Improved resource expenditure can thus be achieved i terms of material 

volume used, life-cycle costs, etc.). Such will be the adopted ethos of this paper. 

2.2. The means to an abstraction 

The de facto starting point of this approach is that the aim (and thus, function) of the overall system is 

to achieve a set number of organisational goals, which is directly linked to its capacity to undertake a 

set number of tasks. The latter are effectively designed outcomes of a sequence of interactions within a 

social system (or social network, hereafter S.N.) such as communication between social agents; within 

a technological system (similarly, a technological network, hereafter T.N.) such as information 

exchanges between servers; but also interaction between the two in a compounded sociotechnical 

system (i.e. a network-of-networks, hereafter NoN) such as people using PCs.  

 

Sequentially, the functionality of the sociotechnical system (i.e. the organisation) depends on the 

health of the underlying T.N. as it is operated, monitored and regulated by a number of social agents 

(i.e. the S.N.). The essence of such abstraction lies on the fact that the capacity of the sociotechnical to 

fulfil its purpose (i.e. deliver the envisioned organisational goals per specified requirements) heavily 

relies on the ability of the T.N. and S.N. to perform their respective individual functions, i.e. their 

allocated tasks. The latter is only achieved if the health of the discrete entities in both T.N. and S.N. 

are healthy (i.e. a reductionist view), but also if the connection within and between the two systems are 

functioning (i.e. a holistic view). Within this paper, the latter will be adopted and specifically focus on 

the interactions between the two systems since, as the complexity and thus, resource expenditure, of 

such systems increases, failures tend to take place on the interfaces rather on the individual systems. 
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2.3. Constructing the model 

In every kind of modelling effort, two approaches can be used with respect to the data used; either 

utilise empirical data (prone to statistical significance concerns and sampling issues which tend to lead 

to result generalizability issues) or artificially-generated samples (prone to wrong parameterisation, 

and thus, irrelevant results).           

2.3.1. Data generation and connectivity 

For this research paper, the latter approach was chosen. In order to mitigate against the potential use of 

inappropriate assumptions, principal parameters that describe similar systems have been drawn 

through the literature (including the topology of and distributions within them). More specifically, our 

S.N. can be defined as a scale-free (SF) network and thus, generated using a widely used model 

[Barabási, Albert 1999]. Such model replicates one of the most important aspects relative to our 

research – the power-law degree distribution that defines the number of connections per node. It is 

worth noting that since the S.N. is an emergent network (i.e. no Grande architect can specify the 

interactions between social agents), no other network topology will be considered, as numerous 

equivalent networks have been found to be SF [Newman 2009]. On the other hand, the T.N. has been 

generated using three fundamentally different network topologies in order to account for different 

features. Namely, the SF network topology (again, replicating the widely noted feature of an infinitely 

variant degree distributions, similar to the S.N.), the Small-World (SW) topology (typically replicating 

the evidently high local clustering between regions of nodes, as observed in numerous real networks 

[Watts, Strogatz 1998] or a random network (in order to represent a homogeneous degree distribution, 

i.e. where each technological system is more or less connected as any other node) [Erdős, Rényi 

1959]. The reasoning behind the use of three rather different models lies to the fact that the T.N. can 

be considered as a designed system where a designer can explicitly decide the number of connections 

for each subsystem. Finally, the NoN is the resulting superposition of the S.N. and T.N. – varying 

form a pure SF network to a SF/SW and SF/Random network. It is further reasoned that within a 

typical sociotechnical system of such context, executive employees have direct access to critical 

information (e.g. databases) and thus, do not need to interact with a large number of other social 

agents (assuming a vertical organisational structure). Thus, a disassortative mix is assumed i.e. highly 

connected nodes within the T.N. (e.g. servers) will be connected with low degree nodes of the S.N. 

(e.g. executive employees). 

2.3.2. Discrete entities 

In terms of the nature of the entities themselves, a high level, abstract representation have been chosen 

in order to strive for generalizability and extend the applicability of the model. Specifically, the 

entities composing the S.N. are coined as regulatory agents (which can be further decomposed as 

organisations, companies, teams, individuals, etc.) Similarly, a high-level representation of the 

information system can be considered to be composed of technological entities (as such, they may 

include PCs, routers, servers, etc.) – see Figure 1.  

 

Figure 1: Entity aggregation in order to contribute towards a generalizable model. This paper focuses on 

the interaction between two systems (see boxed area) rather than within a system.  
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2.3.3. Attack mode 

Two different attack modes will be explored; a random attack (i.e. select a node at random and remove 

it) and a targeted attack (i.e. attack the most connected node in the overall NoN). Figure 2 presents the 

propagation process diagrammatically. As an example, let as first attack node 𝑚1; node 𝑛1 and 𝑚2 

will be subsequently affected (due to link 𝑜1 and 𝑙1 respectively) and a cascade of effects will be 

resonate within the entire NoN until the latter reaches a non-functioning state due to the lack of links.  

 

The attack is assumed to be in the form of a contagion without a threshold, i.e. the progression of the 

infection has a probability of 1 to progress and thus, will continue to spread and remove functional 

nodes until all nodes have been removed. This is an extreme case and is rather simplified as mitigation 

measures are expected to allow for nodes to recover. Nevertheless, since the purpose of the paper is to 

stress test a sociotechnical system under a worst-case scenario, such mechanism can serve as a 

reasonable methodology for comparing the resilience of varying networks topologies. Similarly, 

another assumption is that the attacks in the model are based on whether a node is available or not (i.e. 

it is of binary nature). Further improvement could introduce a simple continuous function in order to 

accommodate for a number of realistic situations such as a node (e.g. a web server) operating at half 

capacity due to the attack.  

 

For the purpose of monitoring the effect of the attack on the functional capacity of both S.N., T.N. and 

NoN, a suitable proxy needs to be chosen. Since the fundamental characteristic of the network is the 

capacity for nodes to interact with each other, a natural measure is the use of “distance” (i.e. how 

many links need to be traversed in order to reach any one node from any other node) between nodes as 

a measure of its capacity to deliver its designated function. If one was to measure the rate of change of 

this measure during an attack, then it could serve as a reasonable proxy on the overall performance of 

the system.  

 

Figure 2: Illustration of the attack process adopted in our model. Notice that the nature of the attack 

mode only matters at the initial set-up; the subsequent steps are identical 



 5 

Such measure is the path-length – it will be used in two forms; the raw path length (i.e. the number of 

links needed to connect a pair of nodes) and the average path length. The latter can be defined as the 

shortest distance (d) between every pair of nodes i and j, averaged for the entire set of nodes (n) within 

a network; mathematically defined as: 

 𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

𝑛×(𝑛−1)
× ∑ 𝑑(𝑣𝑖, 𝑣𝑗)𝑖≠𝑗                                                                                 (1) 

The average shortest path is a commonly used proxy for understanding the rate of which a given 

quantity (let it be information flow, a malicious virus, regulatory signals, etc.) can transverse a 

network [Newman 2009]. Although it is rather obvious that one should strive for as small average path 

length as possible in order to utilise less resources in moving the aforementioned quantity, the 

immediate drawback is that any malicious inclusion within a network can spread much faster within 

the network and thus, its resilience reduces. 

3. Simulation results 

3.1. Average Path Length 

The first output of the simulation focuses on the change of the average path length (averaged over 5 

simulation runs) as the two aforementioned attack modes (i.e. targeted and random) progress. The 

description of the results will be divided in two sections; (1) revolving around the influence of the 

nature of the underlying topology and attack model; (2) on the effect that the network size has upon 

the rate of change of its average path length. Relevant model output can be seen in Figure 3. It should 

be noted that three variants of each network are used in order to introduce the size of the network (in 

terms of node count) as another variable as it will inevitably affects the average path length. 

3.1.1. On the influence of network topology/attack mode in terms of average path length 

By carefully examining the two columns of results, it appears that the effect of the different attack 

mode heavily depends on the nature of the underlying topology. To begin with, it appears that under a 

targeted attack, more steps are required to completely destroy the network when the underlying 

topology of the T.N. is either SW or Random (2nd and 3rd row respectively); less so when it is a SF 

network (1st row). The underlying reason can be found on the degree distributions of these different 

topologies [Albert, Jeong, Barabási 2000] [Demetrius, Manke 2005]. More specifically, both SW and 

Random are homogeneous since their degree distributions follow a normal distribution (i.e. the 

majority of nodes are equally connected and thus, the difference between random removal and 

targeted removal is small). On the other hand, a SF topology implies a highly heterogeneous degree 

distribution (i.e. most nodes are poorly connected while some are highly connected) thus the removal 

of such highly connected nodes (which effectively act as “distribution hubs” in terms of transferring 

any set quantity within the network) has a major effect in its underlying connectivity. 

3.1.2. On the influence of network size in terms of average path length 

One can first notice that depending on the scale of each underlying network, the initial average path 

length is higher – this is intuitively expected as larger networks need, on average, more steps to 

transfer a quantity between any two randomly chosen nodes.  

 

A significant feature that is present in the entirety of cases is the sudden phase change observed. More 

specifically, there appears to be a sudden difference where small, incremental changes in the average 

path length (usually decreasing, though instances exist where a notable increase is first observed) 

immediately lead to a large decrease in the next. As a typical example, consider sub-plot (1, 1) in 

Figure 3, in which small changes take place up to the time step 4 (upon which the user of any of the 

three networks would not notice any significant changes in the functionality of the network), followed 

by a radical decline after only one time step, concluding with the complete deterioration of the largest 

NoN at time step 7. 
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Figure 3. Change in average path length for S.N., T.N. and NoN under the two attack modes. For each 

case, S.N. is defined by a SF topology while T.N. alternates from SF (1st case) to SW (2nd case) to random 

(3rd case). Note that for each network, three different sizes are used per case.   

3.2. Frequency of paths of various lengths 

We will now shift our focus on the frequency of path of various lengths found within each network, as 

an attack progresses, again averaged over 5 runs. For the sake of simplicity, the targeted attack will be 

used as the attack mode of interest as it is expected to be the largest concern for any organisation that 

strives for SA as it will be an attack mode which is out of the organisation’s control. What we are 

interested in looking at in this sequence of results is how the histogram of path length sizes is 
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transformed as the attack progresses, along with how the different topologies and network sizes 

influence this transformation. Relevant model output can be seen in Figure 4.  

3.2.1. First case (scale-free T.N.) 

In the case of a scale-free T.N., an initial narrow distribution of the path length with extremely thin 

tails is firstly observed, while the size of the network appears to be exerting on influence on the  peak 

values. Specifically, it can be seen that as the size of the network increases, the peak value of the 

distribution becomes more pronounced. As the attack progresses, there is a rather constant decrease of 

the mean average path lengths (since it is the most frequently observed path, it has a higher probability 

of removal) leading to a widening of the peak. Again this effect is more pronounced to the largest 

networks (moving from the NoN, to the T.N. and finally, to the S.N.). It is worth noting that when t=3, 

the tail of the distribution becomes much wider for all three networks – occurrences of paths with a 

length greater than 10 is now likely where this was not previously the case. With reference to Figure 3, 

subplot (1, 2), one can easily see that after t=3, a dramatic decrease is observed in all three networks 

(with T.N. being completely decomposed) which is reinforcing the emergence of the longer paths. 

This is mainly due to the fact that as nodes are being removed, it becomes exceedingly costly (i.e. 

more nodes need to be traversed) to reach any other node, assuming that they are still connected by a 

path. Finally, at t=4 the entirety of the large majority of the networks have been decomposed, with 

some trivial number of paths within the NoN still remaining – at this point one can safely assume that 

all three networks are no longer functioning. One should note that during this iteration, the NoN is 

purely a SF network as both constituent networks ( S.N. and T.N.) are of the same nature. 

3.2.2. Second case (small-world T.N.) 

In this case, the T.N. is now defined by a small-world network topology while the S.N. remains by de 

facto SF. Compared with before; the NoN is now a mixture of both SW and SF topology. We notice 

that at the initial stage, the path length distribution is very similar to the first case, although the peaks 

are less pronounced for the T.N. and NoN; S.N. is qualitatively similar to the previous case. As the 

attack progresses, there is no widening of the distribution nor any emerging longer paths. Interestingly, 

by t=3 both S.N and T.N. are now severely decomposed with only some reminiscent connections 

found within the NoN – again by this point, one can assume that the functionality of all three networks 

has been efficiently reduced to zero. It is also worth pointing out that under this scenario, the entirety 

of the networks are completely decomposed after t=3 – this is by far the fastest deterioration as both 

first and third case are more resilient (lasting up to t=4 and t=6 respectively). 

3.2.3. Third case (random T.N.) 

Following our original test hypothesis, T.N. is now defined as a random network while S.N. remains a 

SF network. Similarly, the NoN is now a compounded version of both network topologies. As in both 

previous cases, the distributions are relatively well defined with a high mean peak although they 

appear to have a larger variance – for example the most frequent path within the NoN is of length 4 – 

for case 1 and 2 this was equal to 3 and 2 respectively. Up to and including t=3, the observed 

behaviour appears to be qualitatively similar to case 2 where there is a uniform reduction of all path 

lengths – remember that this was not the outcome in case 1, where the majority of paths removed were 

of the most frequent one making the percentage composition of the second most frequent, path to 

increase. Conversely, the path percentage composition is much more balanced in case 3 (case 2 

remains somewhere in between). At t=4, a rather interesting phenomenon is observed – the same 

populating process of longer paths (again, this is due to removal of a critical number of nodes which 

leads to the emergence of match longer paths) is observed but this effect is counterbalanced by the 

increase in the frequency of much smaller paths. The latter is an effect of the emergence of smaller 

clusters which are inevitably composed by small paths. By referencing the Figure 3, subplot (3, 2), one 

can see the sudden drop of average path length on all three networks at exactly t=4, which further 

reinforces our casual explanation. This is similar to the effect observed at t=3 in the 1st case. However, 

the rate of decomposition is much more consistent over all three networks than in the other two cases.  

 



8 

 

Figure 4. Temporal evolution of the frequency (y-axis) of various path lengths (x-axis) with respect to the 

S.N., T.N. and NoN during a targeted attack. All three cases are shown. 



 9 

3.3. Future model improvements 

By further refining the features that can be parameterised in the network generation process, the 

degree of generalizability of the model would improve. For example, the algorithms that generate both 

the S.N. and the T.N. have no specified purpose other than matching a number of user-defined, 

statistical criteria (e.g. degree distribution). Although such features appear to be universal [Barabási, 

Albert 1999], they are context independent and thus, tailoring of the methodology needs to take place 

in a case by case fashion to ensure specific features (e.g. the tendency of social networks to be 

assortative while technological networks being disassortative  [Newman 2002]) are taken into account.  

4. Design Implications 

We have assumed that the S.N. cannot be designed in any way and since it has been reported 

numerous times in the literature that such networks tend to be SF [Newman 2009] with an exponent of 

2.3 [Nicosia, De Domenico, Latora 2013], this has been the prevailing topology used. However, one 

can explicitly design the topology of the underlying T.N. and thus, in this section, we will present 

some of the insight induced by the model in order to strive for increased robustness in terms of the 

T.N. (and subsequently, the NoN). 

 

By combining observations presented in section 3.1., 3.2., along with Figure 3 and 4 respectively, 

three design considerations can be inferred. 1) The fact that the SW and random topologies take longer 

to fail suggest that these are more robust to both random and targeted attacks. 2) The SW and random 

networks have a gradual increase in average path-length before their sudden decomposition. These 

designs could thus provide a more gradual and measurable system failure. Coupled with longer 

reaction times could allow a system intervention before a catastrophic failure occurs. 3) The larger the 

size of the network, the more time a system tends to have before a catastrophic disaster. However, this 

is most likely to the system’s discredit as the more extensive the response would have to be. The only 

imaginable scenario where this could be beneficial is if the T.N. were in fact multiple small networks 

that are easily compartmentalised and intervened. 

 

We have identified that a SF topology may provide some early warning signs in terms of reduced 

performance (due to the emergence of longer paths – Figure 4) as a proxy of a potential reduction in 

the functionality of the T.N. (and subsequently, NoN) – such early warnings are completely absent 

when the topology of the T.N. is either SW or random (i.e. any form of topology that has an 

underlying homogeneity in terms of node degree). Even worse, as discussed briefly in the section 

regarding the third case, when the T.N. possesses a random topology, an increase is seen in both short 

path lengths (i.e. improvement in performance) along with the emergence of longer paths (fitted to a 

reduction, and thus, counterbalance of performance). If monitored correctly, this may be a better proxy 

to use in terms of identifying whether your system is being maliciously attacked. Either way, having 

small local clusters (i.e. SW topology) is something commonly experienced in organisations as T.N. 

systems are built around specific departments which are then connected together with other 

departments – such approach provides no early warning signs of an eminent attack and thus such 

design appears to be the least efficient in terms of SA. It should, however, be noted that all three 

architectures experience sudden phase changes which do not scale with the size of the networks i.e. 

there is a sudden switch from fully operational to highly reduced operational capacity, thus, the 

capacity to introduce any sort of early warning signs is extremely important.  

 

Given the progression of the average path-length of the SW and SF topologies, the mediated response 

of the random topology is in comparison, the obvious choice given that it presents by far, the best 

survivability. However, one must consider the trade-off between reliability and efficiency. As such, a 

greater number of short path-lengths would suggest greater efficiency, but the trade-off between 

peaking at ~2 versus ~4 cannot be easily transferable without more specific, context-dependent model 

definitions. Such type of study needs a specific definition of what the sociotechnical system is and our 

given level of aggregation merely provides a methodological framework rather than easily transferable 

results. 
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5. Summary 

This papers has reasoned that any organisation can be viewed in terms of its functional connections; 

specifically by viewing it as a Network-of-Networks compromised by a network of social agents who 

operate/monitor it and a technological network composed by a number of aggregated, information-

processing artefacts. It has been proposed that the functionality of the NoN is directly related to the 

topology and size of its composing networks and by understanding their reaction under two attack 

modes, important design decisions can be taken to improve its resilience. 

 

The path length (in its raw and averaged form) has been used as a proxy to infer the effect of the attack 

in terms of the networks’ functionality and have noted the following: 

 Size of networks only plays a role in the initial conditions but has not a significant effect in 

terms of the network’s path deterioration, and subsequently, ability to perform under an attack. 

 All three network topologies illustrate sudden phase changes in which they exhibit a dramatic 

loss of functionality in a very short period of time (e.g. Figure 3, subplot (1, 2) moving from 

t=3 to t=4). This has been a universal result, regardless of attack mode, topology and size. 

 Finally, since phase shifts are eminent universal behaviours, early warning signs in the form of 

reduced performance before a complete breakdown (i.e. emergence of longer paths) is 

desirable (see Figure 4). In such terms, only the SF topology exhibited such behaviour (section 

3.2.1) while the SW topology (a typical arrangement for a number of organisations who tend 

to design technological systems within specific department, with only few connection between 

departments). Random topologies have the largest capacity to provide early warning signs (as 

there is also an increase in the number of short paths, along with the emergence of largest 

paths) but there is an increased cost in utilising such a topology as it implies that every entity 

within the T.N. needs to be approximately connected with an equal number of connections as 

any other node (i.e. implying increased number of redundancies).  
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